Session on "Computer Algebra Modeling in Physics, Classical and Celestial Mechanics, and Engineering"

Convergence order in trajectory estimation with piecewise Bézier cubics based on reduced data

Ryszard Kozera^{1,2}, Magdalena Wilkołazka³

[ryszard_kozera@sggw.edu.pl]

We discuss the problem of fitting reduced data $\mathcal{Q}_m = \{q_i\}_{i=1}^m$ in arbitrary Euclidean space \mathbb{E}^n . In our setting the interpolation knots $\{t_i\}_{i=0}^m$ (with $q_i = \gamma(t_i)$) are unknown and need to be compensated by certain $\hat{\mathcal{T}} = \{\hat{t}_i\}_{i=0}^m$ (see e.g. [1]). Various fitting schemes combined with some recipes for $\hat{\mathcal{T}}$ were studied e.g. in [1-3] (for dense \mathcal{Q}_m) or [4-5] (for sparse \mathcal{Q}_m). In case of \mathcal{Q}_m dense, the convergence rate (and its sharpness) for a selected interpolation scheme $\hat{\gamma}$ (based on \mathcal{Q}_m and $\hat{\mathcal{T}}$) in approximating γ is a task to examine - see e.g. [2-4]. We analyze the problem of partially fitting \mathcal{Q}_m by merely interpolating $\hat{\mathcal{Q}}_m = \{q_0, q_3, q_6, \dots, q_{m=3k}\}$ with piecewise cubic Bézier curve $\hat{\gamma}_B$ (see [6]). The other points serve only as control points. A sharp quadratic order in γ estimation by $\hat{\gamma} \circ \phi$ (with $\phi : [0,T] \to [0,\hat{T}]$) is proved. Numerical and symbolic computation in Mathematica is used to confirm the latter.

Keywords

Interpolation, Reduced Data, Convergence Orders and Sharpness

References

- [1] B.I. KVASOV, *Methods of Shape Preserving Approximation*. World Scientific, Singapore, 2000.
- [2] M.S. FLOATER, Chordal cubic spline interpolation is fourth-order accurate. *IMA Journal of Numerical Analysis* **26**, 25–33, (2005).
- [3] R. KOZERA; L. NOAKES; M. WILKOŁAZKA, Exponential parameterization to fit reduced data. *Applied Mathematics and Computation* **391**, 1–19, article no. 125645 (2021).
- [4] R. KOZERA; L. NOAKES; A. WILIŃSKI, Generic case of Leap-Frog Algorithm for optimal knots selection in fitting reduced data. In *Computational Sciences ICCS 2021*, M. Paszyński et al. (eds.), 337–350. LNCS 12745, Cham, Springer, 2021.
- [5] E. KUZNETSOV; A. YAKIMOVICH, The best parameterization for parametric interpolation. *Journal of Computational Applied Mathematics* **191**(2), 239–245, (2006).
- [6]L. PIEGL; W. TILLER, The NURBS Book. Springer-Verlag, Berlin Heidelberg, 1997.

¹ Warsaw University of Life Sciences - SGGW, Warsaw, Poland

² The University of Western Australia, Perth, Australia

³ The John Paul II Catholic University of Lublin, Lublin, Poland