
The 28th International Conference

on Applications of Computer Algebra ACA’2023

PROGRAM & ABSTRACTS

Warsaw University of Life Sciences – SGGW
Institute of Information Technology

July 17 – 21, 2023

WWW: https://aca2023.iit.sggw.pl



Program and Organizing Committees

General Chair

Alexander Prokopenya, Warsaw University of Life Sciences – SGGW, Poland

Scientific Committee: ACA Working group

Gabriel Aguilera Venegas
Alkiviadis Akritas

Michel Beaudin
Anouk Bergeron-Brlek

Francisco Botana
Bruno Buchberger

Thierry Dana-Picard
Victor Edneral

Jose Luis Galan Garcia
Victor Ganzha

Mark Giesbrecht
Hoon Hong

David Jeffrey
Erich Kaltofen

Ilias Kotsireas (co-chair)
Hiroshi Kai

Robert H. Lewis
Richard Liska

Edgar Martinez-Moro
Manfred Minimair
Aleksandr Myllari
Veronika Pillwein

Alexander Prokopenya
Louis-Xavier Proulx

Pedro Rodriguez Cielos
Tateaki Sasaki
Yosuke Sato

Werner Seiler
Tony Shaska

Dimitris Simos
Margarita Spiridonova

Stanly Steinberg
Quoc-Nam Tran
Elena Varbanova
Nikolay Vasiliev
Stephen Watt

Michael Wester (co-chair)
Wolfgang Windsteiger

Zafeirakis Zafeirakopoulos

3



Advisory Committee
Ilias Kotsireass, Waterloo, Canada
Michael Wester, New Mexico, USA

Local Organizing Committee

Ryszard Kozera (co-chair)
Alexander Prokopenya (co-chair)

Andrzej Zembrzuski
Marcin Zió lkowski
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ACA2023 – General Schedule

S1 – Computer Algebra in Education
S2 – Computer Algebra Modeling in Science and Engineering
S3 – D-Finite Functions and Beyond: Algorithms, Combinatorics

and Arithmetic
S4 – Computer Algebra Systems and Interval Methods
S6 – Computer Algebra Applications in the Life Sciences
S7 – Computational Differential and Difference Algebra and its Applications
S8 – Algebraic Geometry from an Algorithmic Point of View
S9 – Effective Ideal Theory and Combinatorial Techniques in Commutative

and Non-Commutative Rings and Their Applications
S10 – Algebraic and Algorithmic Aspects of Differential and Integral Operators
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Schedule for Invited Talks

Tuesday, July 18, 2023

Build. 34, 3d floor, Lecture Hall ”Aula IV”

11:30 – 12:30 Jon McLoone
Wolfram’s Vision for Unified Computation

Wednesday, July 19, 2023

Build. 34, 3d floor, Lecture Hall ”Aula IV”

11:30 – 12:30 Werner M. Seiler
Theoretical and Numerical Analysis of Singular Initial
and Boundary Value Problems

Thursday, July 20, 2023

Build. 34, 3d floor, Lecture Hall ”Aula IV”

11:30 – 12:30 Adam Strzebonski
Recent Symbolic Computation Developments in Mathematica
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Schedule for Computer Algebra in Education Session
Organized by Michel Beaudin, Michael Wester, Noah Dana-Picard, Alkis Akritas,

José Luis Galán Garćıa, Elena Varbanova

Monday, July 17

Build. 34, 3d floor, Lecture Hall ”Aula IV”

14:00 – 14:30 Elena Varbanova, Stoyan Kapralov, Stanislav Simeonov
Assessment of students’ knowledge and abilities in undergraduate
mathematics

14:30 – 15:00 Setsuo Takato, Hideyo Makishita
Online drills created by extended CindyJS and scoring them
with Maxima

15:00 – 15:30 Eli Bagno, Thierry Dana-Picard, Shulamit Reches
ChatGPT excels in medicine but falters in basic algebra

15:30 – 16:00 Coffee Break

16:00 – 16:30 Johannes Middeke, David J. Jeffrey, Aishat Olagunju
Orthogonal matrices: third time around

16:30 – 17:30 Michel Beaudin
Using CAS in the classroom: personal thoughts (Part III)

17:30 – 18:00 Josef Böhm
Surfaces and their Duals

Tuesday, July 18

Build. 34, 3d floor, Lecture Hall ”Aula III”

16:00 – 16:30 David J. Jeffrey, Albert D. Rich
Rubi gems

16:30 – 17:00 Thierry Dana-Picard, Tomas Recio
Automated computation of geometric Loci in Mathematics
Education

17:00 – 17:30 Zoltán Kovács, Tomás Recio, M. Pilar Vélez
GeoGebra Automated Reasoning Tools: why and how (to use them
in the classroom)

17:30 – 18:00 Magdalena Skrzypiec, W. Mozgawa, A. Naiman, P. Pikuta
Orthogonal trajectories to isoptics of ovals

18:00 – 18:30 Hideyo Makishita
Using CAS in mathematics education with the quadratic curve
addition method
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Schedule for Computer Algebra Modeling in Science
and Engineering Session

Organized by Alexander Prokopenya, Haiduke Sarafian

Tuesday, July 18

Build. 34, 3d floor, Room 3/40

14:00 – 14:30 Ryszard Kozera
Fitting sparse reduced data

14:30 – 15:00 Marcin Choinski
A discrete SIS model built on the strictly positive scheme

15:00 – 15:30 Marcin Zió lkowski
On applications of computer algebra systems in queueing theory
calculations

Wednesday, July 19

Build. 34, 3d floor, Room 3/40

14:00 – 14:30 Haiduke Sarafian
Analyzing electric circuits with computer algebra

14:30 – 15:00 Setsuo Takato, Hideyo Makishita
LMS with simple modeling developed by extended CindyJS and
Maxima

15:00 – 15:30 Setsuo Takato, Jose A. Vallejo
Billiards: At the intersection of Math, Physics and Computer
Algebra

15:30 – 16:00 Coffee Break

16:00 – 16:30 Tatjana Petek, Valery G. Romanovski
Computation of normal forms for systems with many parameters

16:30 – 17:00 Alina Ivashkevich, Victor Red’kov, Alexander Chichurin
Spin 1 particle with anomalous magnetic moment in external uniform
electric field: solutions with cylindric symmetry

17:00 – 17:30 Alexander Prokopenya
On stability of stationary motion of the 3D swinging Atwood
machine

17:30 – 18:00 AmirHosein Sadeghimanesh, Matthew England
Semi-algebraic representations for the multistationarity region of
reaction networks

Friday, July 21

Build. 34, 3d floor, Room 3/40

09:30 – 10:00 Aigerim Ibraimova, Alexander Prokopenya, Mukhtar Minglibayev
Derivation of the evolution equations in the restricted three-body
problem with variable masses by using Computer Algebra
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10:00 – 10:30 Aiken Kosherbayeva, Mukhtar Minglibayev, Alexander Prokopenya
The problem of many bodies with isotropically varying masses

10:30 – 11:00 Zhanar Imanova, Alexander Prokopenya, Mukhtar Minglibayev
Investigation of a two-planetary problem of three bodies with
variable masses varying anisotropically at different rates

11:00 – 11:30 Coffee Break
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Schedule for D-Finite Functions and Beyond:
Algorithms, Combinatorics and Arithmetic Session

Organized by Shaoshi Chen, Frédéric Chyzak, Antonio Jiménez-Pastor, Manuel
Kauers, Veronika Pillwein

Wednesday, July 19

Build. 34, 3d floor, Lecture Hall ”Aula IV”

09:30 – 10:00 Shaoshi Chen, Lixin Du, Manuel Kauers
Reduction based creative telescoping for definite summation of
P-recursive sequences: the integral basis approach (online)

10:00 – 10:30 Armin Straub
Automatic Lucas-type congruences

10:30 – 11:00 Philipp Nuspl
Linear recurrence sequences in the OEIS

Wednesday, July 19

Build. 34, 3d floor, Lecture Hall ”Aula IV”

14:00 – 14:30 Hadrien Brochet, Bruno Salvy
Reduction based creative telescoping for definite summation of
D-finite functions: the Lagrange identity approach

14:30 – 15:00 Catherine St-Pierre
How a linear recurrence problem inspired a solution in algebraic
geometry

15:00 – 15:30 Qing-Hu Hou, Guo-Jie Li, Na Li, Ke Liu
Two applications of the telescoping method

Thursday, July 20

Build. 34, 3d floor, Room 3/40

09:30 – 10:00 Florent Brehard, Nicolas Brisebarre, Mioara Joldes
A symbolic-numeric validation algorithm for linear ODEs with
Newton-Picard method

10:00 – 10:30 Clemens G. Raab, Georg Regensburger
Algebraic consequences of the fundamental theorem of calculus in
differential rings

10:30 – 11:00 Manfred Buchacher
Separating variables in bivariate polynomial ideals: the local case
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Schedule for Computer Algebra Systems and
Interval Methods

Organized by Milan Hladik, Ma lgorzata Jankowska, Vladik Kreinovich, Bart lomiej
Kubica, Nathalie Revol, Iwona Skalna

Wednesday, July 19

Build. 34, 3d floor, Room 3/40

09:00 – 09:30 Ma lgorzata A. Jankowska, Bart lomiej J. Kubica, Andrzej Marciniak,
Tomasz Hoffmann
On the application of an interval finite difference method and
symbolic methods for solving the heat conduction problem

09:30 – 10:00 Tomasz Hoffmann, Andrzej Marciniak, Ma lgorzata A. Jankowska
On the application of directed interval arithmetic for solving
elliptic BVP

10:00 – 10:30 Bart lomiej Jacek Kubica
Symbolic and algorithmic differentiation for the interval algorithm
of training contracting autoencoders

10:30 – 11:00 Laurent Granvilliers
Symbolic recipes for solving nonlinear systems of equations with
interval methods (online)
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Schedule for Computer Algebra Applications
in the Life Sciences

Organized by AmirHosein Sadeghimanesh, Andrzej Mizera, Ali Kemal Uncu

Tuesday, July 18

Build. 34, 3d floor, Lecture Hall ”Aula III”

09:00 – 09:30 Ovidiu Radulescu
Inferring stochastic models of gene transcription from initiation
events by computer algebra

09:30 – 10:00 Alexandru Iosif
Duality in mass-action networks

10:00 – 10:30 Marta Casanellas, Roser Homs Pons, Angélica Torres
Phylogenetic invariants for time-reversible models

10:30 – 11:00 Andrzej Mizera
Divide and control: an efficient decomposition-based approach
towards the control of asynchronous Boolean networks

Tuesday, July 18

Build. 34, 3d floor, Lecture Hall ”Aula III”

14:00 – 14:30 Adam L. MacLean
Gene regulatory network inference with joint multi-omic single-cell
data to learn dynamic cell state transitions

14:30 – 15:00 Jiayue Qi, Josef Schicho
Five equivalent representations of a phylogenetic tree

15:00 – 15:30 Marcus Aichmayr, Georg Regensburger
Computing sign vector conditions for existence and uniqueness
of equilibria of chemical reaction networks

Thursday, July 20

Build. 34, 3d floor, Lecture Hall ”Aula IV”

09:00 – 09:30 Nicola Vassena
How to find or exclude bifurcations in biochemical systems?

09:30 – 10:00 Oskar Henriksson
Generic dimension of varieties arising in reaction network theory and
3D genome reconstruction

10:00 – 10:30 Valery G. Romanovski
Hopf bifurcations in some biochemical models

10:30 – 11:00 Adam Strzeboński
CAD adjacency computation using validated numerics
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Schedule for Computational Differential and Difference
Algebra and its Applications Session

Organized by Alexander Levin, Alexey Ovchinnikov, Daniel Robertz

Monday, July 17

Build. 34, 3d floor, Room 3/40

14:00 – 14:30 Vladimir V. Bavula
Classifications of prime ideals and simple modules of the Weyl
algebra A1 in prime characteristic (online)

14:30 – 15:00 Rida Ait El Manssour, Gleb Pogudin
Multiplicity of arc spaces of fat points

15:00 – 15:30 Alexander Levin
A New Type of Difference Gröbner bases and their applications

15:30 – 16:00 Coffee Break

16:00 – 16:30 Antoine Etesse
On the Schmidt–Kolchin conjecture (online)

16:30 – 17:00 Matthias Seiß, Daniel Robertz
Specializations of normal forms in differential Galois theory

17:00 – 17:30 V. Ravi Srinivasan, Partha Kumbhakar
A classification of first order differential equations

17:30 – 18:00 Valery G. Romanovski
Local integrability of polynomial vector fields
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Schedule for Algebraic Geometry from an Algorithmic
Point of View Session

Organized by Cristina Bertone, Francesca Cioffi

Wednesday, July 19

Build. 34, 3d floor, Lecture Hall ”Aula III”

09:30 – 10:00 Emanuela De Negri, Enrico Sbarra
Jet schemes of Pfaffian ideals

10:00 – 10:30 Dušan Dragutinovic
Binary curves of genera four and five

10:30 – 11:00 Ignacio Garćıa-Marco, Irene Márquez-Corbella,
Edgar Mart́ınez-Moro, Yuriko Pitones
Free resolutions and generalized Hamming weights of binary linear
codes

11:00 – 11:30 Coffee Break

Wednesday, July 19

Build. 34, 3d floor, Lecture Hall ”Aula III”

14:00 – 14:30 Amir Hashemi, Matthias Orth, Werner M. Seiler
Infinite free resolutions induced by Pommaret-like bases over
Clements–Lindström rings

14:30 – 15:00 Michela Ceria, Francesco Pavese
The m-ovoids of W (5, 2) and their generalizations

15:00 – 15:30 Teo Mora, Michela Ceria, Andrea Visconti
Degroebnerization for data modelling problems

15:30 – 16:00 Coffee Break

16:00 – 16:30 Teo Mora, Michela Ceria
Generalizing Möller algorithm: a flexibility issue

16:30 – 17:00 Meirav Amram
On classification of algebraic curves and surfaces, using
algorithmic methods

17:00 – 17:30 Alberto Calabri
On the weighted proximity graph of the base locus of a plane
Cremona map

17:30 – 18:00 Ozhan Genc
Irreducible supernatural bundles on Grassmannians
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Thursday, July 20

Build. 34, 3d floor, Lecture Hall ”Aula III”

09:30 – 10:00 Davide Bolognini, Antonio Macchia, Giancarlo Rinaldo,
Francesco Strazzanti
An algorithmic approach to characterize Cohen-Macaulay binomial
edge ideals of small graphs

10:00 – 10:30 Philippe Gimenez, Mario González-Sánchez
Sumsets and the Castelnuovo-Mumford regularity of projective
monomial curves

10:30 – 11:00 Amir Hashemi, Mahshid Mirhashemi, Werner M. Seiler
Applying machine learning to the computation of Pommaret
bases – A progress report
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Schedule for Effective Ideal Theory and Combinatorial
Techniques in Commutative and Non-Commutative

Rings and Their Applications Session
Organized by Michela Ceria, André Leroy, Samuel Lundqvist, Teo Mora, Eduardo

Sáenz de Cabezón

Monday, July 17

Build. 34, 3d floor, Lecture Hall ”Aula III”

14:00 – 15:00 Sihem Mesnager
A breakthrough concerning the solution of a famous equation
on finite fields and its impacts in the context of S-boxes
in symmetric cryptography

15:00 – 15:30 Rodrigo Iglesias, Matthias Orth, Eduardo Sáenz-de-Cabezon,
Werner M. Seiler
A new view on the Rees algebra of a monomial plane curve
parametrization

15:30 – 16:00 Coffee Break

16:00 – 16:30 Cristina Bertone, Francesca Cioffi, Matthias Orth,
Werner M. Seiler
Marked bases for some quotient rings and applications - part I

16:30 – 17:00 Cristina Bertone, Francesca Cioffi, Matthias Orth, Werner Seiler
Marked bases for some quotient rings and applications - part II

17:00 – 17:30 Philippe Gimenez, Diego Ruano, Rodrigo San-Jos’e
Vanishing ideals and evaluation codes

17:30 – 18:00 Viktor Levandovskyy
Letterplace: theory, technology, and implementation

Tuesday, July 18

Build. 34, 3d floor, Room 3/40

09:00 – 09:30 Filip Jonsson Kling, Samuel Lundqvist, Lisa Nicklasson
On binomial complete intersections

09:30 – 10:00 Lisa Nicklasson
Pinched Veronese algebras

10:00 – 10:30 Victor Ufnarovski, Erik Kennerland, Anna Torstensson
Almost monomial subalgebras of MK[x] and their LAGBI bases

10:30 – 11:00 Discussion
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Tuesday, July 18

Build. 34, 3d floor, Room 3/40

16:00 – 16:30 Yosuke Sato, Ryoya Fukasaku
On simplification of comprehensive Gröbner systems

16:30 – 17:00 Tateaki Sasaki
Term elimination sequence and removal of extraneous factors
in two-polynomial systems

17:00 – 17:30 Shinichi Tajima, Katsusuke Nabeshima
Testing tameness of a complex polynomial map via comprehensive
Gröbner systems

17:30 –18:00 Katsusuke Nabeshima, Shinichi Tajima
Primary decomposition via algebraic local cohomology with tag
variables

18:00 – 18:30 Deepak Kapur
A Gröbner basis as a combination of congruence closures
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Schedule for Algebraic and Algorithmic Aspects of
Differential and Integral Operators Session

Organized by Moulay Barkatou, Thomas Cluzeau, Clemens Raab,
Georg Regensburger

Tuesday, July 18

Build. 34, 3d floor, Lecture Hall ”Aula IV”

09:00 – 09:30 Mohamed Barakat
Doctrine specific ur-algorithms

09:30 – 10:00 Vladimir V. Bavula
The most general theory of one-sided fractions

10:00 – 10:30 Manfred Buchacher
The Newton-Puiseux algorithm and effective algebraic series

10:30 – 11:00 Alexander Levin
New dimension polynomials and invariants of inversive
difference-differential field extensions

Tuesday, July 18

Build. 34, 3d floor, Lecture Hall ”Aula IV”

14:00 – 14:30 Cyrille Chenavier, Thomas Cluzeau, Alban Quadrat
Computation of Koszul homology and application to involutivity
of partial differential systems

14:30 – 15:00 Clemens Hofstadler, Clemens G. Raab, Georg Regensburger
A semi-decision procedure for proving operator statements

15:00 – 15:30 Sette Diop
A differential algebraic approach of systems theory

15:30 – 16:00 Coffee Break

16:00 – 16:30 Shaoshi Chen, Hao Du, Hui Huang, Ziming Li
Hypergeometric creative telescoping (online)

16:30 – 17:00 Li Guo, Yunnan Li, Yunhe Sheng, Rong Tang
Crossed homomorphisms and Cartier-Konstant-Milnor-Moore
theorem for difference Hopf algebras (online)

17:00 – 17:30 Alexei Cheviakov
Approximate symmetries and conservation laws and their
applications to PDEs (online)

17:30 – 18:00 Antonio Jiménez-Pastor
Difference-differential polynomials in SageMath
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Wednesday, July 19

Build. 34, 3d floor, Lecture Hall ”Aula IV”

16:00 – 16:30 Thomas Cluzeau, Camille Pinto, Alban Quadrat
Towards an effective integro-differential elimination theory

16:30 – 17:00 Franz Winkler
Symbolic solutions of differential equations

17:00 – 17:30 Thieu N. Vo, Yi Zhang
Rational solutions of first-order algebraic ordinary difference
equations

17:30 – 18:00 Viktor Levandovskyy
On an interplay of computer algebra and ring theory

Thursday, July 20

Build. 34, 3d floor,Room 3/40

09:00 – 09:30 Sebastian Posur
An abelian ambient category for behaviors in algebraic
systems theory (online)
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Wolfram’s Vision for Unified Computation

Jon McLoone [jonm@wolfram.com]

Wolfram Research Europe

The presentation will delve into the philosophy that has been the driving force behind the
development of Wolfram Language over the past 35 years, while also shedding light on its
current priorities. Additionally, the talk will explore how this philosophy has been applied to
the integration of significant advancements in generative AI.

To illustrate this alignment, examples from the latest Mathematica 13.3 will be shown.
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Theoretical and Numerical Analysis of Singular
Initial and Boundary Value Problems

Werner M. Seiler [seiler@mathematik.uni-kassel.de]

Kassel University, Germany

We consider quasilinear ordinary differential equations both theoretically and numerically.
We call an initial or boundary value problem singular, if at the corresponding point the coef-
ficient of a derivative of highest order vanishes. In such a situation, the well-known existence
and uniqueness theorems cannot be applied and also classical numerical integrators typically
break down in the vicinity of such a singularity. Using a geometric view of a differential
equation as a submanifold in a suitable jet bundle, we define an explicit dynamical system
on this submanifold and relate questions of existence, (non)uniqueness and regularity of so-
lutions to standard problems in dynamical systems theory. Furthermore, this point of view
leads in a straightforward manner to a simple and robust numerical approach to singular initial
and boundary value problems. As examples, we will consider classical equations like Lane-
Emden or Thomas-Fermi and show how the for applications relevant initial and boundary
value problems can be solved in a few lines of Maple code.
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Recent Symbolic Computation Developments in
Mathematica

Adam Strzebonski [adams@wolfram.com]

Wolfram Research, USA

In this talk a general overview of recent improvements in Mathematica symbolic computa-
tion capabilities will be presented and some of the improvements will be discussed in more
detail. We will focus on new methods for finding exact solutions of systems of equations
and inequalities and for solving exact optimization problems, performance improvements in
polynomial algebra functions, and on new functionality for computation over finite fields.
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In memory of Eugenio Roanes-Lozano

In the triad Teaching-Learning-Assessment (TLA) the components are to be considered
in tandem, not standalone. The activities are to be interrelated, because what gets assessed is
what gets taught. That is why we need to focus on: purposeful Teaching, purposeful Learning
and purposeful Assessment. A TLA process could help the students build habits and qualities
of mind that are useful for the real life and, above all, for their work.

Typically, teachers ask the students increasingly challenging questions to test their com-
prehension of a given material. In the textbooks, the most common verbs are find, determine,
calculate, solve, explore. These abilities show that the student has accomplished the goal “Re-
member, Understand and Apply” (in Blooms taxonomy), i.e. Lower Order Learning (LOL);
the latter are really necessary and important and have to be assessed. However in technol-
ogy enriched teaching-learning environment there are opportunities to interpret this goal and
change the way of its accomplishment. Higher Order Learning (HOL: development of abili-
ties to analyze, synthesize, create) is to be also achieved and assessed. Care must be taken to
changes: the things we think are changing aren’t always what’s changing.

The students have to learn certain things, to achieve learning outcomes, as well as to
learn how to learn. New professions require not only knowledge and skills, but also logical,
critical and creative thinking. The student has to build up as well the habit to do things in
sequence in order to develop an organized and disciplined mind. The assessment of students’
knowledge and abilities has to assure the accomplishment of these qualities. Here we share
thoughts and experience in this direction.

Using a CAS any Taylor polynomial of interest can be obtained. Then instead of its de-
termination further questions for testing the deepness of students’ knowledge of this concept
can be set up. For instance, consider the following tasks.
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Task 1. Given the 5th degree Taylor polynomial T5(x) =
x

2
+
x2

8
+
x3

24
+
x4

64
+

x5

160
at the

point x0 = 0 of the function f(x) = ln
2

2− x
.

(a) Show that the first term is correct.

(b) Calculate an approximation of f(0.5) (or of ln
4

3
) using the second degree Taylor

polynomial T2(x) at the point x0 = 0.

(c) Evaluate f (5)(0).

Task 2. The function f(x) : R+ → R+ satisfies the following conditions:

f(4) = 2, f ′(4) = 0.25, f ′′(x) = − 0.25

x
√
x
.

(a) Find the polynomial of Taylor of 3rd degree T3(x) of f(x) at the point x0 = 4.

(b) Calculate an approximation of f(4.2) using the second degree Taylor polynomial
T2(x) at the point x0 = 4.

(c) Determine the function f(x).

The aim of such kind of questions is to help students consolidate key knowledge about Taylor
polynomials: their construction, their applications: for calculating values of functions, for
solving approximately integrals and differential equations. The solution also aims at HOL
and development of the habit to solve problems not just any how, to work (consequently,
perform any activity) smarter not harder. In the presentation the approach to the solution of
the above tasks will be considered.

In case of Fourier series similar questions can be formulated. When the student is check-
ing up, for instance, the correctness of a term he/she develops the habit to control the results
using different prototypes (analytical, numerical, graphical) including those obtained by ap-
plication of software.

Task 3. Given the Fourier series f(x) =
π

2
+

4

π
cosx+ · · ·+ an cos(nx) + . . . for

the periodic function f(x) =
{
π + x, −π ≤ x ≤ 0
π − x, 0 ≤ x ≤ π , f(x+ 2π) = f(x), x ∈ R.

Show that the second term is correct. Sketch the graph of f and justify the form of the series.

CASs allow to formulate questions based on visual information.
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Task 4. The area D is bounded by the curves y = 9 + 3x and y = 9− x2 (Fig. 1). Describe

D in terms of double inequalities in two ways. Calculate the integral
∫∫
D

dydx and interpret

the result.

Fig. 1

“Work smarter, not harder” is related to effective solutions. Asking right questions en-
sures effective learning. In connection to effectiveness the following cases will be considered
in the presentation.

1) Evaluate the second order partial mixed derivative of the function

f(x, y) = ln(2x+ 5)− 2x arctan(2x) + e5y + sin(xy) + 24 at the point P
(π
2
, 1
)
.

2) Solve:
∫

dx

x ln(x)
;

∫
x
√

16− x2dx;
∫ 1

0

√
1− x2dx−

∫ 0.5

0

√
1

4
− x2dx;

∫ 0.5

−0.5
(12x3 + x cos(x)− 6π cos(3πx))dx.

By the choice of an approach to the solution the basic question is whether to apply a method
if the solution can be obtained by direct application of definitions, properties or/and graphical
images.

Mathematics and computer science education is of great importance to society. Any
activity to stimulate and provoke the interest of young people to these fields will be for the
benefit of society. This would produce added value to this education. The second author
of this paper proposed the idea of organizing national student contest in mathematics with
application of CASs. He shared it with university teachers keen to implement CASs in the
teaching-learning process. As a result of teachers’ and students’ enthusiasm the experimental
competition in Computer Mathematics took place in 2011 in Bulgaria [1]. The 9th edition of
CompMath was held in October 2022.
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It has to be mentioned that in the past several years Geo-Gebra is intensively used at
Bulgarian math high schools. Advanced students and students who prefer doing mathematics
in technology-supported environment are the majority of participants in this competition. All
they need to be stimulated by additional activities at the universities: establishment of initia-
tives such as informal education, visiting lecturers - distinguished professionals in computer
mathematics and computer science, clubs for exchange of ideas and experience. Based on
their achievements they need to be advised to acquire additional learning material, so that to
develop their full potential.

CompMath is now a traditional annual forum for students at Bulgarian universities. It
proved to be useful for stimulating students’ interest in mathematics and the opportunities of
CASs for solving both theoretical and applied problems. It helps to create new as well as
best practices in mathematics education: they could serve as models for suitable purposeful
problems and assessment criteria.

The participants in the CompMath are given 30 mathematical problems to be solved
within four hours. Based on their bachelor degree program they are divided into two groups:

- Group A: Mathematics, Informatics, Computer Science;

- Group B: Engineering, Natural Sciences.

All topics from the mathematics courses are covered. The students solve the problems in
different ways depending on the level of their mathematical knowledge and programming
skills. In the presentation some interesting problems and solutions created by participants
will be demonstrated [2]. Mathematica, Maple, Maxima, Derive and MATLAB are mostly
used in CompMath.
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KeTCindy is a system to produce various graphics for LATEX documents easily and interac-
tively. It uses dynamical geometry software Cinderella as its GUI, and outputs TEX graph-
ical codes such as Tpic, pict2e and Tikz. Actually, KeTCindy is a collection of functions
described by Cindy Script, a generic programming language. The first author developed
KeTCindy to input fine figures easily in the printed materials to be destributed in Mathe-
matics classes[1]. Actually, not only the first but the second author utilizes KeTCindy to
produce various geometric figures appeared in ‘wasan’, Japanese mathematics which was
developed in Japan during the Edo period. Anyone can dowload KeTCindy package freely
from CTAN(Congressive TeX Archive Network)

https://ctan.org/pkg/ketcindy,
or directly from

https://github.com/ketpic/ketcindy,
which one can search with the keyword ’ketcindy’.

KeTCindy can produce various kind of figures. Moreover it can call Maxima, C and R from
the inside, where C is used to speed up hidden line removal which is important to create fig-
ures of 3d surfaces for printed materials. In 2014, Prof. Richter Gebert’s group in Technische
Universität München developed CindyJS,

https://cindyjs.org
which is a web framework almost compatible with Cinderella. CindyJS produces HTML files
with small size, about 20KB or so, but it might be a little insufficient to create various kind
of web materials used in mathematics classes. So we developed KeTCindyJS which supports
the use of some functions of KeTCindy with those of CindyJS. The steps are as follows.

1. Export the HTML from Cinderella with pressing the button.
2. Press button ‘KeTJS’ in the KeTCindy file

The size of the body HTML file is only 150KB and the size of libraries of KaTeX and CindyJS
are 1.5MB, so totally less than 2MB. One can see the various samples in

https://s-takato.github.io/ketcindysample/.

During the pandemic, students and teachers were forced to web learning and teaching. In
mathematics classes, to exchange questions and answers with formulae became a big prob-
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lem. It would be rather easy for teachers to distribute questions, but it is much more difficult
for students to send their answers and for teachers to collect/score them. The hard part for
students is to write and send mathematical formulae with two-dimentional structure. So first,
we set rules for one-dimensional expression.as follows:

fr(a,b) for
a

b
, sq(a) for

√
a, sin(2,x) for sin2 x, log(10,x) for log10 x, ...

Next, we developed an HTML application KeTMath using KeTCindyJS. It shows two-
dimentional expressions when students input one-dimentional ones.

Remark: KeTMath is available with student’s smartphone.

Moreover, we have developed KeTMath Learning Management System(KeTLMS). With this
and with also a regular platform such as Google Classroom, Teams, Moodle and so on, teach-
ers can send text-based questions, collect text-based answers and score them with Maxima.
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Lavoie [6] showed that the introduction of calculators in the classroom is a revolution similar
to the switch from writing with a goose feather to writing with an iron quill. From time
to time, new technologies appear in the world. Plotters, calculators, symbolic calculators,
handheld devices, and more advanced Computer Algebra Systems. It is common sense that
all these technologies enter the world of education. In particular, Engineering Education
must involve various technologies in the courses, depending on the topics. An important
reason is that the students have to develop a good literacy in technologies that they will use in
their professional life. Moreover, because of the frequent development of new technologies,
students have to acquire learning skills, which will be useful for lifelong learning.

Jerusalem College of Technology is an institution of Higher Education mostly devoted to
High-Tech Engineering. Because of the large number of groups for every basic course, coor-
dinators have to be appointed for these courses; the structure of the work is explained in [3].
Two of the authors are the coordinators of the two courses in Linear Algebra for engineers,
and the other one is a teacher in the course . Every year, about seven hundred students are
involved, divided into about ten lecture groups and more for practice sessions. This model
has been developed at JCT for more than a decade [3], with continuous improvements, most
of them allowed by technology. Recently a new technology, based on AI, has been released:
ChatGPT.

ChatGPT is an impressive natural language processing tool that has made significant strides in
recent years. It is capable of performing various tasks such as language translation, text sum-
marizing, and even generating coherent and plausible stories. However, ChatGPT’s abilities
and limitations (see [2]) in mathematical problem-solving have to be thoroughly explored.

Our talk aims to examine ChatGPT’s aptitude in mathematical problem-solving and the ex-
tent to which it can solve various math problems. Additionally, we will also analyze the
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limitations of ChatGPT in math and the potential for future advancements in this field1.

ChatGPT has been tested for numerous possible applications in medicine, and its affordances
have been analyzed; the success percentage is noticeable, but full success has yet to be
achieved. [4]. A further remark about this software addresses the importance of communica-
tion using natural language [5]. This remark is of the utmost importance for us as educators.
It has (almost) always been taken into account by software developers: generally, the syntax
of commands in a Computer Algebra System is close to the way it would have been worked
out by hand.

In this talk, we report on the first steps of ongoing research, which analyzes which benefits
the teachers and the students can have from this technology in Linear Algebra. We elaborate
also on some points from [9]. In particular, we show:

• Exercices in High-School algebra for which ChatGPT provides an accurate answer:
elementary systems of linear equations;

• Examples in basic Undergraduate Linear Algebra where the system gives a correct
answer;

• Examples in basic Undergraduate Linear Algebra where ChatGPT contradicts itself.
Here we could identify problems mixing the inaccuracy of algebraic computations to-
gether with problems with recognition of what a set is.

In the last two cases, we tried to "teach" the system and made experiments using independent
computers, in order for the system not to identify the user.

A complex instrumental genesis is at work [1, 7]: the teachers have to undergo such a process,
and the AI-system too!

An analysis of the needed orchestration [8] with students is on its way also. Artigue [1]
mentions that the implementation of a new technology depends on the "institutional culture".
We are aware that some institutions in the world have already decided on the prohibition
of using ChatGPt. Such a prohibition has been issued in Italy for the entire country, and
cancelled a couple of weeks later with limitations. Our first results show that a more positive
approach can be adopted. In particular, we identified that the system begins often by writing
the definitions of the involved mathematical objects, an attitude that we try to educate our
students.

Keywords
ChatGPT, Linear Algebra, Instrumental Genesis, limitations
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1This paragraph is a slightly modified version of an answer given by ChatGPT. It shows that, as far as text is
concerned, things are acceptable. In our talk, we address mathematical issues.
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This presentation reflects new ideas about a topic which has been discussed at previous ACA
conferences. Orthogonal matrices Q are defined by QQt = dI where Qt is the transpose,
and I is the identity matrix with d 6= 0. Orthonormal matrices denote the special case d = 1.
In addition to the important role they play in applications, such as the QR decomposition,
orthogonal matrices are also useful to instructors in Linear Algebra and multivariable calcu-
lus. For example, if an instructor wants to create a problem in which lines intersect at a given
angle, then one way to do this is to create the problem in a simple configuration and then use
an orthogonal matrix to transform the problem to a more complicated one. Thus, the lines
L1 = r〈1, 0, 0〉, L2 = s〈1, 1, 0〉, L3 = 〈2, 0, 0〉 + t〈0, 1, 0〉 form a simple triangle, but after
multiplying by Q, they still form a triangle with the same angles, but are now shifted and
rotated in space.

For pedagogical reasons, it is very helpful to students if Q matrices have rational elements.
In this talk, we shall discuss various ways in which orthogonal and orthonormal matrices
with purely rational entries can be computed. Our aim is to create a repository of rational
orthogonal matrices for instructors to use when creating examples and exercises. Access will
be free and open.

The first approach utilises an exhaustive search. Since the columns of any rational orthonor-
mal matrix must form a Pythagorean n-tuple, we start by generating the list of all primitive
Pythagorean n-tuples where the entries are below a certain size. We then combine the tuples
until we have found an orthonormal matrix. (Note that we only need to find n− 1 columns in
this way; the n-th column is then uniquely determined and can be computed by other means.)
The benefit of this method is that we gain tight control over the sizes of the matrix entries,
which is helpful for generating and ordering our open database of orthogonal matrices. A
repository is more useful if the entries are not randomly presented.

A second method is based on a result by Cayley [1]: If A is a skew-symmetric rational matrix,
then (I −A)−1(I +A) will be orthogonal; and all rational orthogonal matrices which do not
have 1 as an eigenvalue can be obtained in this way. In [2], Liebeck and Osborne have shown
that every orthogonal matrix can be transformed into an orthogonal matrix for which 1 is not
an eigenvalue through multiplication of its rows by±1. Hence, Cayley’s formula can be used
to obtain all orthogonal matrices. We analyse some interesting patterns which arise from the
use of this method.
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Finally, rational orthonormal matrices of higher dimension can be generated by composing
smaller orthonormal matrices. For example, it is well known (see, e. g., [3]) that the Kro-
necker product of orthonormal matrices is itself orthonormal. Also, block diagonal matrices
where the blocks are orthonormal will themselves be orthonormal. If we multiply these block
diagonal matrices by random permutations, it becomes easy to generate orthonormal matrices
with a predefined degree of sparseness.
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At ETS, CAS technology is mandatory since 1999 and TI-Nspire technology is used campus
wide since 2011 (both calculator and software). The talk will be the third of a series about
how technology has changed the way we teach mathematics to future engineers. First, let us
recall what we did in the last two ACA conferences.

For the online 2021 Athens conference, a third degree polynomial equation was chosen. New-
ton’s method was applied and animated in order to find the roots. Cardano’s formulae were
deduced using CAS manipulations. We showed why trigonometric substitutions are a better
choice when all roots are real.

For the 2022 hybrid Istanbul conference, complex analysis was chosen. We visualized the
complex roots of a polynomial using 2D and 3D plots using TI-Nspire CAS. We showed how
Laurent series, residue integration techniques and numerical line integrals can be combined to
verify some answers. And how the Maple built-in Rieman Zeta function allows us to observe
some non trivial zeros of ζ(s).

For this in person 2023 Warsaw conference, ODEs and real analysis are chosen. The exam-
ples listed below are interesting for a student to explore when a CAS handheld is available
during the classroom. Using some popular computer algebra systems, the examples will be
performed live during the talk.

• Heavy computations are often required in ODEs application problems, so using a CAS
has always been natural. But theoretical results (namely the existence and uniqueness
of solutions) can benefit from CAS computations and graphic facilities. It is quite
interesting to look at the answer provided by popular CAS when solving

dy

dx
=

4y

x2 − 9
, y(a) = b .

For some initial values, hidden complex numbers can appear on the screen due to cubic
roots. This is a good opportunity to recall the domain of a solution. The textbook [1]
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is famous for this : the authors took special care of linearity and effects of parameters
on solutions instead of listing many tricks for solving different ODEs.

• Engineering students rarely use mathematical analysis. Pointwise convergence of se-
ries of functions is not an important part of their curriculum. At ETS, the differential
equations course has been updated recently (see [2] where you can download my col-
league Gilles Picard’s Volume 2). Taylor series method for solving ODEs along with
numerical methods are used for linear variable coefficients second order ODEs. Ex-
ample : without technology, one can find a series solution y(x) =

∑∞
n=0an x

n for the
problem (x2 + 1) y′′ − 3y′ + y = 0, y(0) = 1, y′(0) = −1. But when the following
recurrence formula will be found, we will need a machine to compute the coefficients :

an =
3(n− 1) an−1 − (n2 − 5n+ 7) an−2

n(n− 1)
, n ≥ 2.

Then if you want to compute with accuracy the value of the solution at some point x0
of the interval of convergence, you need to use a partial sum of the form

so(p) =

p∑
n=0

an x
n
0 .

Finally, a numerical first-order system ODE solver can validate the answer.

• Equation solving can benefit from CAS graphical capabilities. A simple example as
solving xx = a for different values of the parameter a can easily force the students to
use calculus and get to know the LambertW function!

Figure 1: Horizontal line intersecting the curve xx
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Recently, I found among my many papers a one-page article about Dual Surfaces, written
by Dr. Richard Morris, Liverpool University, which appeared in the Maths&Stats journal,
which was published for several years by the University of Birmingham. It must have been
before 2000 because I could not find the article in the MSOR Maths&Stats archives : see [1]
and [2]. Dr. Morris wrote: The dual of a surface is the set of planes tangent to the surface.
The mapping works as follows. Any plane a x + b y + c z = d can be interpreted as a point
(a, b, c, d) in RP 3. Morris performs a projection of these points into R3 using the map

(a, b, c, d) →
(
a

c
,
b

c
,
d

c

)
.

Some pictures in a low quality were included. This was all!

I will show how to perform this mapping using DERIVE and TI-Nspire CAS as well and
present various surfaces together with their duals. Cusps appear and we can ask where they
are coming from? Then I will vary the mapping followed by parameter curves and their
duals. More questions come up, like How does the dual of a dual look like? This would be a
nasty and boring calculation done by hand, but using a CAS this becomes possible. Finally, I
don’t raise the problem in a higher dimension – as generalisation usually works – but do it the
reverse way: I make a step down and try to find the dual of a plane curve. Again cusps appear.
Where do they come from? Preparing this presentation I did some internet research – and I
was lucky enough to find in [3] another much more extended paper published by Morris also
in 2002 – which provided more insight for the properties of the duals. So, this short article of
Dr. Morris from 2002 kept me busy some time and brought a lot of pleasure and surprise into
my mathematical life which I would like to share with an audience. I’ll show among others
a dual with cuspidal edges (Fig 2), how they can be derived and from where they are coming
from in the base surface (Fig 1). The references could be accomplished with [4].
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Figure 1: Base surface Figure 2: Dual with cuspidal edges
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1 Abstract

The Rule-Based Integration project (Rubi) has been under continuous development since
2008. The current publicly available release is version 4.16.1.0 available at [1]. Active
development of Rubi’s database of rules has continued unabated since that version. This
report selects a few of the recent additions to Rubi, and describes some of the processes that
help direct the research into new rules.

We recall that while the primary aim of Rubi is to evaluate indefinite integrals using a rule-
based paradigm, an important aspect of this aim is that Rubi is not content to return just any
expression that is a valid integral, but aims to return the best or optimal integral expression.

1.1 The best integral

How do we decide which of these integrals is better?

2
√
2

∫
t2

1 + t4
dt = arctan

−1 + t2√
2 t

− arctanh

√
2 t

1 + t2
, (1)

= arctan(
√
2 t+ 1) + arctan(

√
2 t− 1)− arctanh

√
2 t

1 + t2
. (2)

We shall discuss this question.

1.2 Some new trig integrals

One of Rubi’s great strengths is special cases. The integral below is one special case of a
general class. Using the rule for the general class results in a very long answer. In new Rubi,
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the special case is recognized and returned.∫
sin(100x) + sin(99x)

cos(100x) + cos(99x)
dx = − 2

199
ln cos

199x

2
.
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The computation of geometric loci is an important topic, both at High-School level and at
undergraduate level. This topic has been explored for a long time [1,2]. Nevertheless, the
goals and the methods which can be utilized with todays’ tools are different. At undergraduate
level, the dialog between Geometry and Algebra is fruitful [3, 5], but it is less relevant for
High-School. For example, section 4.2 in [3] emphasizes the process of obtaining locus
visualization (image, equation), and considers sophisticated examples, far from the contents
of the pre-university education in most countries. Moreover, it does not develop the two steps
that we consider more relevant when dealing with secondary education.

These steps will be the main points of attention in our contribution here:

• conjecturing the loci structure —and not only its equation or plot—

• and verifying the soundness of the conjecture—with automated reasoning tools.

In our contribution, we will argue how both tasks should be, in the educational context, the
more relevant ones that students of today (or tomorrow) would have to learn. We exemplify
these ideas with two examples:

1. Ptolemy’s theorem;

2. a very simple, yet not obvious, locus, namely that of the vertex C of a triangle ABC,
such that the medians from A to the midpoint of AC and from B to the midpoint of
BC are perpendicular (Figure 1).

As an example of our disquisitions, let us mention that, in the second example, one immediate
output of the exploration can be an equation for the desired geometric locus, but this equation
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Figure 1: Automated determination of a locus

is only computed numerically, and it might be of little help for a High-School student search-
ing for some geometric features (center, radius) of this locus. Moreover, the plotted circle
is just a "shape", not a geometric object recognized by the software, and standard GeoGebra
commands such as "Prove" (also available as a button) cannot apply to verify conjectures over
this plot. Thus, students have to explore and confirm their conjectures with the use of more
advanced tools offered by GeoGebra-Discovery [4] that provide an exact answer, and enable
to determine "what is really" the desired locus, after implementing a "true’ geometric con-
struction of the circle, using plane transformations which have automated implementations in
the software.
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Dynamic Geometry (DG) systems have become quite popular for teaching purposes. Al-
though initially characterized by the ability to drag geometric constructions while keeping
the relations (perpendicularity, parallelism, etc.) established by the user among the involved
geometric objects, some of these environments evolved to integrate a computer algebra sys-
tem, so they should be better described as “dynamic mathematics” software. This is the case
of GeoGebra1, integrating the computer algebra system Giac. This has opened the possi-
bility to translate algebraically the geometric relations between objects in a construction and,
thus, to deal with computer algebra algorithms that allow the development of highly perform-
ing, mathematically rigorous (not just probabilistic or numerically approximate) Automatic
Reasoning Tools (ART) on geometric statements. Thus, currently GeoGebra (and, for some
advanced tools, the fork version GeoGebra Discovery2) already offers the user a rich variety
of ART for tasks related to experimenting, discovering, and asserting:

• Automatically declaring the truth or failure of a given statement (Prove and
ProveDetails commands),

• Automatically discovering how to modify a given figure so that a wrong statement
becomes true (LocusEquation command, returning where to place some point on
a construction so that a given property holds),

• Automatically discovering and returning a message with the properties holding among
some selected pair of elements of the given figure (Relation command),

• Automatically discovering all statements (of a certain kind: lengths ratio, perpendicu-
larity, etc.) holding true and involving a given element in a figure, selected/introduced
by the user (Discover, StepwiseDiscovery command),

1http://www.geogebra.org
2https://github.com/kovzol/geogebra/releases
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• Automatically discovering all statements of a certain kind involving “all” the elements
of a given figure, see 3.

Unfortunately, the algebraic geometry nature of the algorithms behind these tools does not
allow providing readable arguments justifying their outputs. Yet, we think that the univer-
sal accessibility and portability of GeoGebra; its worldwide diffusion, with more than 100
million users all over the world – especially in the educational field – requires the analysis
and design of new approaches to teaching proof at secondary education level and beyond,
because teaching geometry to students that have at their disposal powerful ART which they
can apply to deal with geometric problems, cannot be a mere repetition of the traditional cur-
riculum: teachers should learn about this technology and should explore its application in the
classroom

As it was already noticed by Howson and Wilson, too long ago, in the publication known as
Kuwait report [1]:

“. . .today’s student may well be able to apply algebraic methods. . . The solution
derived by applying a mechanical procedure may be less aesthetically satisfying
than a geometrical one, but are there other objections to algebraic methods than
that of aesthetics?”

As well as very recently in a paper by Hanna and Yan [2]:

“It is perhaps too early for empirical studies of classroom experience using the
enhancements to GeoGebra. In this respect the situation of GeoGebra is similar,
but not identical, to that of proof technology in general. While it is reasonable
to expect proof technology to foster students’ proving abilities, and there is cer-
tainly supporting anecdotal evidence, its potential advantages have not yet been
systematically assessed. . . Theorem provers do provide a guarantee, as we have
seen, but in the shape of a fully formal proof that may be unintelligible. . . This
state of affairs is a challenge for educators. . . They also have reason to believe,
based on the anecdotal evidence, that this new proof technology could turn out
to be of great benefit in the classroom. . . The key is to make a start, beginning
with exploratory studies of the potential of these new tools at both the secondary
and post-secondary levels.”

Thus, the purpose of this talk is, firstly, to make a summary presentation of the above-
mentioned automated reasoning functions in GeoGebra, through some illustrative examples
[3], [4]. Then we will focus on the proposal of diverse open-ended tasks, inspired in recent
experiences ([5], [6], [7]) that have been developed with different kinds (secondary education,
undergraduate or initial teacher training) of students, regarding the use of automated reason-
ing techniques, showing how these tools can be used within the educational context, helping
students to develop “augmented intelligence” skills by reasoning in collaboration with the
computer.

Acknowledgements: Authors are partially supported by grant PID2020-113192GB-I00
(Mathematical Visualization: Foundations, Algorithms and Applications) from the Spanish
MICINN.

3https://autgeo.online/ag/automated-geometer.html?offline=1
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Let C be an oval (by which we mean a simple closed convex plane curve of class C2 with
positive curvature) and α ∈ (0, π). The set of points at which two support lines of C intersect
at angle π − α is called an α-isoptic (or simply an isoptic) of C. Isoptics of plane curves are
most often considered in the parametric form proposed in [1] and this parametrization seems
to be the main tool in the study of isoptics and their generalizations, see for example [2], [5],
[6], [7], [8]. Isoptics can be considered also in the nonparametric form, however, implicit
equations are known only for a small class of curves, see for example [2],[3].

Our goal is to find orthogonal trajectories of isoptics, but not using the classical approach
to this task, which uses implicit equations. We construct parametrizations of orthogonal
trajectories to isoptics of ovals, using the solution of a specific Cauchy problem. To prove that
the defined function is continuous, we use some version of l’Hôpital’s rule for multivariable
functions [4]. To illustrate the problem, we analytically determine orthogonal trajectories for
a simple example of a circle isoptics, while for more complicated examples we provide and
draw numerical solutions, created using the Mathematica program.

In addition to discussing the subject of my research, I’ll also share some experiences regard-
ing teaching differential geometry at the University.

Keywords
isoptic curve, support function, evolution, orthogonal trajectory

References
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The author has proposed a geometric construction that adds the locus of a quadratic curve to a
drawing with a ruler and compass. The author calls this method “the quadratic curve addition
method." Its characteristic method is based on the fact that the student discerns the foci and
directrix, the characteristics of a quadratic curve, from the given conditions. Therefore, the
author has made it possible for KeTcindy and LATEX to generate quadratic curves by telling the
dynamic geometry software (Cinderella) the foci and directrix, which are the characteristics
of the quadratic curves that they have detected. The circle’s center, found by the quadratic
curve addition method, is the intersection of those trajectories and figures. The author has
shown the effectiveness of this method using Apollonius’ problem [1].
In the following, the author presents a case study of the quadratic curve addition method,
using the Japanese Sangaku as a subject to show a drawing of a quadratic curve. Concerning
the locus of a quadratic curve and CAS, for example, when finding the radius of a circle, it
is helpful to express the locus and conditions in terms of equations. In particular, equations
representing quadratic curves are generally complex, and the author believes that obtaining
solutions by substituting them into CAS, such as Wolfram Alpha, is effective in mathematics
education.

The Educational Value of Drawing
Geometric construction is an activity with high educational value. Through such activities,
as a result, it is expected to enhance students’ problem-solving abilities.
In connection with this study, recent dynamic geometry software has excellent features in
GUI plotting and CUI plotting. Therefore, it is possible to transfer mathematical concepts to
the software by converting them into scripts, which is expected to provide more opportunities
to use mathematics better. If scripting becomes possible, it is conceivable to create a unit
vector on the two sides that flank the angle and to construct the angle bisector as the sum of
the two vectors. Another possible method is to express one vector of the inner center by the
position vectors of the three vertices. The author’s mathematical utilization is the teaching
method that can be realized by writing mathematics in scrips.

Problem: As shown in Fig.1, place the large circle O so that circles A, B, C, and D are
tangent to the interior of the significant process. Let the diameters of the circles O and A be
16 cm, 4.8 cm, respectively. Note that the author quoted Sangaku’s problem as an example
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of a drawing using the quadratic curve addition method.

Q1: Find the center of circle B by the quadratic curve addition method.
A1: The center of circle B lies on the locus of an ellipse with point O and point A as foci.
However, the sum of the distances from the two points O and A is the sum of the radii of the
circles O and A. The center of circle B also lies on the locus of a parabola with O as the focal
point and line ` as the directrix.

Q2: Find the radius of the circle B.
A2: In Fig.2, the center of the circle B is on the ellipse.√

x2 + y2 +
√

x2 + (y + 3.2)2 = 12.8

And in Fig.3, the circle’s center B lies on the parabola with point O as the focal point and `
as the directrix.

x = − 1

16
y2 + 4

As shown in Fig.4, the point B is the intersection of an ellipse and a parabola.
We solve the system of equations; we obtain (x, y) = (3, 4), (0,−8).
Hence, the center of circle B is (3, 4).
Since OB = 5 cm and the radius of circle O is 8 cm, the radius of circle B is 3 cm.

The author will present the quadratic curve addition method for some Sangaku problems in
this talk. The author will also share the significance and value of the quadratic curve addition
method in mathematics education and deepen the discussion with the participants.
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Poland

We discuss the problem of fitting data points Qm = {qi}mi=0 in arbitrary Euclidean space En.
It is additionally assumed here, that the corresponding interpolation knots {ti}mi=0 remain
unknown and as such they need to be somehow replaced by T̂ = {t̂i}mi=0 (subject to t̂i <
t̂i+1). Here, without loss of generality t̂0 = 0 and t̂m = T , for some T > 0. In the case of
Qm dense the issue of convergence rate of a given interpolation scheme γ̂ (based on Qm and
T̂ ) in approximating γ (satisfying γ(ti) = qi) has been extensively studied (see e.g. [1]). In
contrast for Qm sparse a possible criterion to select the new knots T̂ is to minimize:

J (t̂1, t̂2, . . . , t̂m−1) =

∫ T

0

‖γ̈N (t̂)‖dt̂, (1)

where γ̂N is a natural spline based on Qm = {qi}mi=0 and T̂ . Finding such optimal knots
T̂ opt forms a highly nonlinear optimization task (see e.g. [2]). One of the computational
schemes handling (1) (called Leap-Frog) relies on the composition of overlapping univariate
optimizations schemes - see [3]. We discuss special conditions under which the unimodality
of these univariate functions holds and show the robustness in case of their perturbation.
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A discrete SIS model built on the strictly positive
scheme
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I will present a model which is a discretization of its continuous counterpart. The contin-
uous model was introduced and analyzed in [1]. Both continuous and discrete systems are
epidemic models, which are a SIS (susceptible–infected–susceptible) type. The models’
variables are densities of susceptible (healthy) and infected individuals. As a discretization
method, I chose the strictly positive scheme. This scheme preserves positivity of the vari-
ables, what is necessary because of their meaning. In my talk I will present the basic proper-
ties of the system, including the value of the basic reproduction number R0 and the existence
of stationary states appearing in the system. Further I will discuss local stability of the sta-
tionary states. I will also prove the global stability of the state for which there is no infection
in the population. Moreover, the behavior of the system for R0 = 1 will be discussed. In the
end of my talk I will justify a lack of a bifurcation in the system. Theoretical results will be
complemented with numerical simulations. My results constitute a continuation of the work
presented in and [3] and [2].
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On applications of computer algebra systems in
queueing theory calculations

Marcin Ziółkowski1 [marcin_ziolkowski@sggw.edu.pl]

1 Institute of Information Technology, Warsaw University of Life Sciences – SGGW, Warsaw,
Poland

In the present talk, the most important aspects of computer algebra systems applications in
calculations for classical queueing theory models and their novel modifications are discussed.
We present huge computational possibilities of Mathematica environment and effective meth-
ods of obtaining results connected with main performance characteristics of queueing sys-
tems. We investigate solutions of computational problems such as: calculating derivatives
of complicated rational functions of many variables with the use of generalized l’Hospital’s
rule, obtaining exact formulae of Stieltjes convolutions, calculating chosen integral trans-
forms often used in queueing theory and possible applications of generalized density function
of random variables and vectors in such computations.

Queueing theory is the field of applied mathematics that has been experiencing great devel-
opment in recent years. This direction, started in the 20’s of the twentieth century by A. K.
Erlang, had initially important meaning mainly for telecommunication engineers [2] but its
importance was also noticed by scientists from the technical computer science area because it
introduced some models that could be used in the process of analyzing or designing of real–
life computer systems, e.g. computer networks. The number of publications investigating
such models has been still increasing since the moment of a big headway and popularization
of computer systems in the 90’s of previous century. E.g. in works [4]–[6] authors analyze
systems with random volume customers (customers coming to the queueing systems transport
information that is written in memory buffer of the system until customer ends his service –
see also monograph [3]). The very interesting, novel approach appears also in papers [7–9]
that investigate models in which customer’s volume is multidimensional. The main prob-
lems analyzed for such models are connected with calculating characteristics of the number
of customers present in the system, characteristics of the total volume of customers and loss
probability. The need of constructing such models is confirmed in projects of some technical
devices [10,11].

In the process of mathematical analysis of queueing theory models we face the problem of
complicated symbolic computations. The general results often contain functions that are very
complex and inconvenient from the numerical point of view as they contain such mathemat-
ical concepts like: generating functions, integral transforms or convolutions. Moreover, in
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obtained formulae we usually find very complicated rational functions of one or many vari-
ables what does not let calculate needed numerical characteristics in easy way. For example,
we need to calculate derivatives of these functions, often using l’Hospital’s rule many times
which makes computations are hardly possible without computer algebra systems help. In
fact, computer algebra systems give tools to lead complicated symbolic computations suc-
cessfully. Mathematica environment delivers many implemented useful functions letting cal-
culate integral transforms and their inversions or derivatives of complicated rational functions
[1]. The big advantage of computer algebra systems is also storing previous results in memory
and the possibility to use them again in next steps of computations despite of their complex-
ity. These facts confirm that computer algebra systems are fantastic tool being helpful in the
process of queueing models analyzing.

Keywords
Queueing models, Queueing systems with random volume customers and sectorized memory
buffer, Generalized l’Hospital’s rule, Stieltjes convolution, Laplace – Stieltjes transform
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Analyzing electric circuits with Computer
Algebra

Haiduke Sarafian1 [has2@psu.edu]
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This report shows how starting from classic electric circuits embodying common electric
components we have reached semi-complicated circuits embodying the same components
that analyzing the signal characteristics requires a Computer Algebra System. Our approach
distinguishes itself from the electrical engineers’ (EE) approach which relies on utilizing
commercially available software. Our approach step-by-step shows how Kirchhoff’s rules
are applied conducive to the needed circuit information. It is shown for the case at hand the
characteristic information is a set of coupled differential equations and that with the help of
Mathematica numeric solutions are sought. Our report paves the research road for unlimited
creative similar circuits with any degree of complications. Occasionally, by tweaking the
circuits we have addressed the “what if” scenarios widening the scope of the investigation.
Justification of the accuracy of our analysis for the generalized circuits is cross-checked by
arranging the components symmetrizing the circuit leading to an intuitively predictable rea-
sonable result. Mathematica codes are embedded assisting the interested reader in producing
and extending our results.

Keywords
Characteristics of Electric Circuits, DC and AC Driven Circuits, Computer Algebra System,
Mathematica
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KeTLMS(KeTCindy Learning Management System) is a system to distribute mathematical
questions, collect answers and score them using some platform such as Google Classroom,
Teams or Moodle for actual communication. The point is the content consists of only one line
of text described according to KeTMath rule, simple one-dimensional formula description
rule which we have defined. For example, the question

Differentiate [1] y =
x2 + 4x+ 3√

x
[2] y = t3 cos 2t

is described with LATEX as
Differentiate
[1] $y=\dfrac{x^2+4x+3}{\sqrt{x}}$ [2] $y=t^3\cos 2t$.

On the other hand, our notatation would be
@Differentiate@ [1] y=fr(x^2+4x+3,sq(x)) [2] y=t^3cos(2t).

Remark) @expression@ means the expression is not a mathematical formula.
One-dimentional expression is suitable for sending and receiving, but not for reading. So
we developed an HTML application KeTMath with our software KeTCindyJS, which is the
cooperation of KeTpic we have been developing, dynamic geometry software Cinderella and
CindyJS which is a framework almost compatible with Cinderella.
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KeTLMS is essentially based on this method. The procedure is as follows.
1. Make a question file according to KeTMath rule.

Q
@Differentiate@
[1] y=fr(x^2+4x+3,sq(x))
[2] y=t^3cos(2t)
Ans
[1] fr(3x^2+4x-3,2xsq(x))
[2] 3t^2cos(2t)-2t^3sin(2t)

2. Create kettask.html using ’toolketmath.cdy’, and distribute it to students.
3. Collect answers, and create ketscore.html to score them.
4. Maxima can be useful for simple questions. KeTLMS has a function to use it.

One can insert figures to the kettask.html. For three dimentional figures, Ketcindy call gcc
from the inside to speed up hiddlen line removal which is important to create figures of 3d
surfaces. Not only static figures, one can also embed interactive ones. Embedding interactive
HTML of three dimentional figures will be future work.
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Billiards: At the intersection of Math, Physics and
Computer Algebra
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Billiards, interpreted as dynamical systems, have a lot of interesting geometric properties
[2], [3]. Particularly, the dynamics on a billiard whose boundary is a conic serves as an
excellent visualization aid for some deep results in affine and projective geometry. In this
talk we will be interested in the case of elliptic billiards. From the point of view of Physics,
they are quite manageable, being integrable systems, yet they show phenomena such as the
appearance of caustics, closed orbits of any prescribed period [1], and the like. The fact
that they are geometrically describable makes them suitable to be analyzed with a Computer
Algebra System (CAS), and we will illustrate how to model their main features using Maxima
and KeTCindy, in such a way that they can be introduced in math, physics and engineering
courses (but also as a tool in research tasks).
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Computation of normal forms for systems
with many parameters

Tatjana Petek1,4 and Valery G. Romanovski1,2,3 [valerij.romanovskij@um.si]

1 Faculty of Electrical Engineering and Computer Science, University of Maribor, Maribor,
Slovenia
2 Faculty of Natural Science and Mathematics, University of Maribor, Maribor, Slovenia
3 Center for Applied Mathematics and Theoretical Physics, University of Maribor, Maribor,
Slovenia
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There are two ways to compute Poincaré-Dulac normal forms of systems of ODEs. Under the
original approach used by Poincaré the normalizing transformation is explicitly computed.
On each step, the normalizing procedure requires the substitution of a polynomial to a series.
Under the other approach, a normal form is computed using Lie transformations. In this case,
the changes of coordinates are performed as actions of certain infinitesimal generators. In
both cases, on each step the homological equation is solved in the vector space of polynomial
vector fields V n

j where each component of the vector field is a homogeneous polynomial of
degree j. We present the third way of computing normal forms of polynomial systems of
ODEs where the coefficients of all terms are parameters. Although we use Lie transforms the
homological equation is solved not in V n

j but in the vector space of polynomial vector fields
where each component is a homogeneous polynomial in the parameters of the system. It is
shown that the space of the parameters is a kind of dual space and the computation of normal
forms can be performed in the space of parameters treated as the space of generalized vector
fields. The approach provides a simple way to parallelize the normal form computations
opening the way to compute normal forms up to higher order than under previously known
two approaches.
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The study of a spin 1 particle has a long history – for example see [1]-[4]. In the present paper
we will adhere the the general technics developed in [5], [6]. A generalized 10-dimensional
Duffin – Kemmer equation [7] for spin 1 particle with anomalous magnetic moment is exam-
ined in cylindric coordinates (t, r, φ, z) in presence of external uniform electric field oriented
along the axis z. On solutions, we diagonalize operators of the energy and third projection of
the total angular momentum. First we derive the system of 10 equations in partial derivatives
for functions Fi(r, z) = Gi(r)Hi(z) (i = 1, 10). The use of the method based on projec-
tive operators permits us to express 10 variables Gi(r) through only 3 different functions
f1(r), f2(r), f3(r), which are solved in Bessel functions. After that we derive the system of
10 first order differential equations for functions Hi(z). This system reduces to one inde-
pendent equation for a separate function and to the system of two linked equations for two
remaining primary functions. The last system after diaginalization of the mixing matrix gives
two separated equations for new variables. All three equations for basic functions are solved
in terms of the confluent hypergeometric functions. Thus, the complete system of solutions
for the vector particle with anomalous magnetic moment in presence of external electric field
is found.
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spin 1 particle, anomalous magnetic moment, external electric field, cylindrical symmetry,
method of the projective operators, partial differential equations, exact solutions

References
[1] A. PROCA, Sur les equations fondamentales des particules élémentaires. C. R. Acad. Sci.
Paris, 202, pp. 1490–1492 (1936).
[2] R.Y. DUFFIN, On the characteristic matrices of covariant systems. Phys. Rev., 54 (12),
pp. 1114–1114 (1938).
[3] E. SCHRÖDINGER, Pentads, tetrads, and triads of meson matrices. Proc. Roy. Irish.
Acad. A., 48, pp. 135–146, (1943).

63



[4] N. KEMMER, On the theory of particles of spin 1. Helv. Phys. Acta., 33 (8), pp. 829–838
(1960).
[5] E.M. OVSIYUK; V.V. KISEL; V.M. RED’KOV, Maxwell Electrodynamics and Boson
Fields in Spaces of Constant Curvature, Nova Science Publishers Inc., New York, 2014.
[6] V.V. KISEL; E.M. OVSIYUK; O.V. VEKO; Y.A. VOYNOVA; V. BALAN;, V.M. RED’KOV,
Elementary Particles with Internal Structure in External Fields, Vol. I, II, Nova Science Pub-
lishers Inc., New York, 2018.
[7] A. SHAMALY; A.Z. CAPRI,Unified theories for massive spin 1 fields. Can. J. Phys., 51,
pp. 1467–1470 (1973).

64



Applications of Computer Algebra – ACA 2023
Warsaw, Poland, | July 17 – 21, 2023
Session on “Computer Algebra Modeling in Science and Engineering”

On stability of stationary motion of the 3D
swinging Atwood machine

Alexander Prokopenya1 [alexander_prokopenya@sggw.edu.pl]

1 Institute of Information Technology, Warsaw University of Life Sciences – SGGW, Warsaw,
Poland

The swinging Atwood machine under consideration consists of two masses m1, m2 attached
to opposite ends of a massless inextensible thread wound round two massless frictionless
pulleys of negligible radius (see [1]). The mass m1 is allowed to swing in two dimensions
and its behaves like a spherical pendulum of variable length while the massm2 is constrained
to move only along a vertical. Such a system has three degrees of freedom and its equations
of motion may be written in the form

rθ̈ = −g sin θ − 2ṙθ̇ +
p2ϕ cos θ

r3 sin3 θ
,

r2 sin2 θϕ̇ = pϕ = const, (1)

(2 + ε)r̈ = rθ̇2 − g(1 + ε− cos θ) +
p2ϕ

r3 sin2 θ
.

Here the dot above the symbol denotes a total time derivative of the corresponding function,
the variables r, θ, ϕ describe geometrical configuration of the system, g is a gravity constant,
ε = (m2 −m1)/m1, and pϕ is an itergal of motion determined from the initial conditions.
In the case of pϕ = 0 the mass m1 oscillates on a vertical plane and we obtain the swinging
Atwood machine which may demonstrate a periodic motion (see [2, 3]).

One can easily check that there exists an exact particular solution to equations (1) of the form

ϕ(t) =

√
g(1 + ε)

r0
t+ ϕ0, r(t) = r0, θ(t) = θ0 = arccos(1/(1 + ε)). (2)

Solution (2) describes a uniform motion of body m1 in a horizontal plane on a circular orbit
of radius r0 sin θ0. Simulation of the system motion shows that small variation of the initial
conditions results only in small perturbation of the bodym1 orbit. Analyzing the Hamiltonian
function of the system and applying the stability theory, we have proved that solution (2) is
stable with respect to the variables r, ṙ, θ, θ̇, ϕ̇.
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The behavior of a chemical reaction network equipped with mass-action kinetics can be mod-
elled by a polynomial ODE system. The equilibriums of this ODE system are the solutions to
a system of polynomial equations. The model usually does not only involve variables, con-
centrations of the substances, but also some parameters such as reaction rates and constants
of conservation laws. An important question is whether there exists a choice of parameter
values for which the system has more than one equilibrium: in that case we say the network
can exhibit multistationary behavior. The next important question is to describe the parame-
ter region where the network is multistationary. In this talk we compare several approaches
to describe the multistationarity region. In theory tools such as Cylindrical Algebraic De-
composition can provide an exact semi-algebraic description of this region. However, in
practice due to its worst case doubly exponential complexity it is usually infeasible for a nor-
mal computer. Sacrificing the exactness in exchange with lower complexity, one still can get
a semi-algebraic description of the multistationarity region using a sampling or a rectangular
representation of the region and polynomial superlevel sets.
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Observational astronomy states that celestial bodies are unsteady, their masses, sizes, shapes
and structures change in the process of evolution. Variability in the masses of celestial bodies,
especially at the nonstationary stage of the system, significantly affects the further dynamical
evolution of this system as a whole [1, 2, 3]. In this connection, we consider the restricted
three-body problem with variable mass in the presence of reactive forces. The problem was
investigated by methods of perturbation theory, based on the aperiodic motion along a quasi-
conic section developed by us [4]. The system of differential equations of perturbed motion in
oscillating variables of aperiodic motion along a quasi-conic section in the form of Newton’s
equation was derived [5]. By using Computer Algebra we obtained the equations of secular
perturbation of the restricted three-body problem with variable masses in the presence of
reactive forces [6].
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The number of confirmed exoplanetary systems is more than 4000 to date [1] and it is grow-
ing up every day. The parent star and exoplanets are non-stationary [2]. It means that the
investigation of a multi-planetary system with variable masses is actual in celestial mechan-
ics and astronomy. Due to the non-stationarity of celestial bodies, the mathematical model of
their motion becomes more complicated.

In the present talk, we investigate the dynamic evolution of the system of many bodies with
isotropically varying masses. We apply the method of canonical perturbation theory devel-
oped for solutions of such non-stationary problems in [3]. Doing quite cumbersome symbolic
calculations with the computer algebra system Wolfram Mathematica [4], we calculated the
perturbing function in the form of power series in small parameters (analogues of eccen-
tricities and inclinations). Averaging the perturbing function over the mean longitudes and
computing its derivatives with respect to the canonical variables, we derived the evolution
equations describing the secular perturbations of the orbital elements in analytical form [5].
As an example, we have considered the K2-3 exoplanetary system (see [6]) and obtained
numerical solutions of the evolution equations.
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Masses of real celestial bodies may vary anisotropically [1, 2]. Due to the anisotropic change
of the masses reactive forces appear and this complicates the problem significantly. We in-
vestigated a two-planetary problem of three bodies with variable masses in the presence of
reactive forces and obtained the equations of perturbed motion in the framework of Newton’s
formalism [3]. The equations of motion in the orbital coordinate system, in contrast to the
Lagrange equations [4], are convenient for taking into account reactive forces. The expansion
of perturbing functions is a time-consuming analytical calculation and leads to very cumber-
some analytical expressions. In the problem under consideration, we calculated the power
expansions of the perturbing functions in terms of small parameters up to the second order
inclusive. In the non-resonant case, we obtained the evolutionary equations determining the
secular perturbations of the orbital elements. All symbolic calculations were performed with
the computer algebra system Wolfram Mathematica [5].

Keywords: two-planetary three-body problem, variable mass, evolutionary equations, Wol-
fram Mathematica.
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Integral bases have been used for designing reduction-based telescoping algorithm for al-
gebraic functions [1] and D-finite functions [2]. The notion of integral bases for D-finite
functions has recently been generalized to P-recursive sequences [3]. As a discrete analogue,
we develop a reduction-based creative telescoping algorithm for P-recursive sequences via
integral bases.
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Rowland and Zeilberger [3] devised an approach to algorithmically determine the modulo
pr reductions of values of combinatorial sequences representable as constant terms (building
on work of Rowland and Yassawi [4]). The resulting p-schemes are systems of recurrences
and, depending on their shape, are classified as automatic or linear. We review this approach
and suggest, as in [5], a third natural type of scheme that combines benefits of automatic and
linear ones. As an example of the utility of these “scaling” schemes, we confirm and extend
a conjecture of Rowland and Yassawi [4] on Motzkin numbers.

It is a well-known and beautiful classical result of Lucas that, modulo a prime p, the binomial
coefficients satisfy the congruences(

n

k

)
≡

(
n0
k0

)(
n1
k1

)
· · ·

(
nr
kr

)
,

where ni, respectively ki, are the p-adic digits of n and k. Many interesting integer sequences
have been shown to satisfy versions of these congruences. For instance, Gessel [1] has done
so for the numbers used by Apéry in his proof of the irrationality of ζ(3). We make the
observation that a sequence satisfies Lucas congruences modulo p if and only if its values
modulo p can be described by a linear (or scaling) p-scheme with a single state. This simple
observation suggests natural generalizations of the notion of Lucas congruences. To illustrate
this point, we derive explicit generalized Lucas congruences for integer sequences that can
be represented as certain constant terms. This part of the talk is based on joint work [2] with
Joel Henningsen.

Keywords
Lucas congruences, constant terms, diagonals, finite-state automata, linear p-schemes, bino-
mial sums, Apéry-like numbers, Catalan numbers, Motzkin numbers
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As of spring 2023, the On-Line Encyclopedia of Integer Sequences (OEIS) contains about
360 000 sequences [1]. Referencing an invited talk by Bruno Salvy at ISSAC 2005 [2], it is
frequently stated that around 25% of the sequences in the OEIS satisfy a linear recurrence
with polynomial coefficients. Using different guessing techniques we try to verify this claim
and additionally give an estimate for the number of sequences satisfying a linear recurrence
with constant coefficients. Furthermore, we study how this ratio changed over the past two
decades and investigate the orders and degrees (in the case of polynomial coefficients) of the
guessed recurrences.

Automatically proving positivity of a sequence which satisfies a linear recurrence is, in gen-
eral, a difficult task [3]. Several algorithms are known which can be used to prove positivity
for certain classes of these sequences where the recurrences have only constant coefficients.
We take some of the sequences from the OEIS as a test set to examine how powerful these
algorithms are [4].
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Creative telescoping is an algorithmic method initiated by Zeilberger [1] to compute defi-
nite sums and integrals. In the context of summation with regard to the variable t, given a
summand F (t, x1, . . . , xm), where each xi is a variable with an associated linear operator ∂i
(generally, differentiation or shift or q-shift operator), the goal is to construct identities of the
form ∑

α

cα(x1, . . . , xm)∂α(F ) = G(t+ 1, x1, . . . , xm)−G(t, x1, . . . , xm), (1)

where the sum is over a finite number of multi-indices α and we use the multi-exponent no-
tation ∂α = ∂α1

1 · · · ∂αm
m . Such an identity can in many applications be summed over t. Its

right-hand side telescopes by design. Since the coefficients cα do not depend on the vari-
able t, the left-hand side results in an operator applied to the definite sum of F . From there,
other algorithms can be applied to compute information on the sum. The left-hand side of (1)
is called a telescoper of F and the function G in the right-hand side is the corresponding cer-
tificate. Over the years, efficiency issues have led to the development of creative telescoping
algorithms based on reductions. They avoid the computation of potentially large certificates
and they compute telescopers in a more incremental fashion. In 2018 Bostan-Chyzak-Lairez-
Salvy [2] published a reduction based algorithm for computing integrals of arbitrary D-finite
functions. It was adapted to the summation case by van der Hoeven [4].

In my talk I will describe a new reduction based creative telescoping algorithm that is an
adaption of the two previous ones. It computes telescopers for definite sums of D-finite
functions as well as the associated certificates in a compact form. The algorithm relies on
a discrete analogue of the generalized Hermite reduction introduced in [2] or equivalently,
a generalization of the Abramov-Petkovšek reduction [3]. In contrast to van der Hoeven’s
algorithm, ours always returns the minimal order telescopers.
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We review existing techniques to find terms in linearly recurrent sequences, such as Fiduccia’s
algorithm [1], and we focus on what can be done in some specific cases, such as when the
recurrence is not square-free [2]. We rediscuss a map inspired by van der Hoeven and Lecerf
[3] and how it ended up inspiring a method we use to address different problems arising from
algebraic geometry or algebra, e.g. finding high powers of matrices [4]. We present some
of the general lines of one of our recent works in the context of bivariate Gröbner bases [5],
which is tailored to address the question of the local structure of the intersection of plane
curves. In particular, we discuss the interest in moving the primary component to the origin
and how it arises from a similar approach to what we use for sequences.
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In this talk, we will give two applications of telescoping method.

The first one focuses on series involving π. In [5], Sun derived several identities involving π
by telescoping method. For example, from Bauer’s series [1]

∞∑
k=0

(4k + 1)

(
2k
k

)3
(−64)k

=
2

π

and the telescoping sum

n∑
k=0

(16k3 − 4k2 − 2k + 1)
(
2k
k

)2
(2k − 1)2(−64)k

=
8(2n+ 1)

(−64)n

(
2n

n

)3

,

he deduced
∞∑
k=0

k(4k − 1)
(
2k
k

)3
(2k − 1)2(−64)k

= − 1

π
. (1)

We aim to give a systematic method to construct series like (1). This motivates us to consider
the following problem: Given a hypergeometric term tk, for which rational functions r(k) is
the product r(k)tk Gosper summable?

By aid of Gosper’s algorithm, we give candidates for the denominator of r(k). Then by
polynomial reduction [2,4], we derive an upper bound and a lower bound on the degree of
the numerator of r(k). Based on these results, we are able to construct several new series
involving π.

Wang and Zhong [6] further extended the method of polynomial reduction to P -recursive
sequences. We also give a brief introduction on their results.

The second one focuses on the congruences of partial sums of P -recursive sequences [3]. For
example, we have

2

n

n∑
k=1

(2k + 1)M2
k ∈ Z.
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where

Mk =

k∑
l=0

(
k

2l

) (2l
l

)
l + 1

is the k-th Motzkin number.

Let {a(i)k }k≥0, (1 ≤ i ≤ m) be P -recursive sequences of order di, respectively. We aim to
find non-trivial polynomials X(k) and Ai1,...,im(k) such that

X(k)a
(1)
k · · · a

(m)
k = ∆

 ∑
(i1,...,im)∈S

Ai1,...,im(k)a
(1)
k−i1 · · · a

(m)
k−im

 .

Summing over k from 0 to n − 1 and considering the congruences of boundary values, we
will derive the congruence of

n−1∑
k=0

X(k)a
(1)
k · · · a

(m)
k .
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Computing uniform approximations with validated error bounds for solutions of various kinds
of differential equations is a very common task in the community of computer-assisted proofs
in mathematics [1, 2, 3, 4].

Spectral-Galerkin methods are a tool of choice for computing uniform approximations of
the solution of a linear ordinary differential equation [5, 6, 7]. The variable coefficients
as well as the solution are approximated by truncated series in a well-chosen chosen basis of
orthogonal functions, like the Chebyshev polynomials. The idea is to rephrase the differential
equation as an infinite linear system and solve a finite-dimensional truncation of it, thanks to
some compactness property. It is therefore natural to consider the same truncation scheme to
design a Newton-like a posteriori validation operator [8, 9, 10]. Using the Banach fixed-point
theorem, one obtains a rigorous error bound associated to the approximation obtained by the
numerical spectral method.

In the first part of this talk, we will show that although spectral methods are known to produce
exponentially fast convergent approximations, the corresponding validation procedure may
converge much slower [10]. Indeed, the truncation index for the validation operator may be
much larger than the one actually used for numerical approximation in the spectral method,
rapidly leading to very large matrices.

In the second part of this talk, we present an alternative validation algorithm [11] with the
desired “exponential convergence” property. Inspired by the famous Picard iterations [12],
the idea consists in approximating the so-called “resolvent kernel” of the inverse integral
operator rather than truncating the corresponding infinite matrix. It is similar in essence to
the symbolic Newton iterations on differential equations [13, 14, 15], but in a numerical
setting in a well-chosen Banach space of coefficients of orthogonal functions rather than
exact Taylor expansions. This complexity gap is illustrated in practice by examples involving
“large” parameters.
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In this talk, we discuss the fundamental theorem of calculus and its consequences from an
algebraic point of view [1]. In particular, for functions with singularities, this leads to a
generalized notion of evaluation. We present properties of such integro-differential rings
and discuss several examples. We outline the construction of the corresponding integro-
differential operators and provide normal forms using rewrite rules. These rewrite rules are
then used to derive several identities and properties in a purely algebraic manner, generalizing
well-known results from analysis. In identities such as shuffle relations for nested integrals
and the Taylor formula, additional terms are obtained to account for singularities. Another
focus lies on treating the basics of linear ordinary differential equations (ODEs) within the
framework of integro-differential operators. These operators can have matrix coefficients,
enabling the treatment of systems of arbitrary size in a unified manner.
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1 RICAM, Austrian Academy of Sciences, Linz, Austria

We report on work in progress on the problem of finding all elements of K(x) + K(y) that
are of the form qp for a given irreducible polynomial p ∈ K[x, y] and some non-zero rational
function q ∈ K(x, y) whose denominator is not divisible by p.

Let p be an irreducible polynomial of K[x, y] that is not an element of K[x]∪K[y]. We define
the local ring of K[x, y] at p by

K[x, y]p := {r ∈ K(x, y) : p - denom(r)} .

and denote by 〈p〉 the set of multiples of p in K[x, y]p. The set of separated multiples of p is

〈p〉 ∩ (K(x) +K(y))

and can be described by

F(p) := {(f, g) ∈ K(x)×K(y) : f − g ∈ 〈p〉} .

The latter is a field with respect to component-wise addition and multiplication and referred
to as the field of separated multiples of p. By Lüroth’s theorem there is a pair (f, g) ∈
K(x)×K(y) of rational functions such that

F(p) = K((f, g)).

If there are f ∈ K(x) and g ∈ K(y) such that qp = f − g for some q ∈ K(x, y) \ {0}, then it
is enough to know the singularities of f and g and their multiplicities to find them. The latter
essentially means to know the denominators of f, g and q and the degrees of their numerators.
The unknown f, g and q can then be determined by making an ansatz for their numerators,
clearing denominators in qp = f − g, comparing coefficients and solving a system of linear
equations for them. We present a heuristic to determine the singularities of f and g and their
multiplicities by inspecting the leading parts of p with respect to different gradings. Based on
previous work [1] we also explain why we belief that our reasoning gives rise to an algorithm
that solves the problem of determining a (f, g) ∈ K(x)×K(y) that generates F(p).
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Commutative algebra, elimination theory, separation of variables
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On an application of an interval finite difference
method for solving the heat conduction problem

Malgorzata A. Jankowska1, Bartłomiej Jacek Kubica2,
Andrzej Marciniak3,4, Tomasz Hoffmann5

[malgorzata.jankowska@put.poznan.pl]

1 Institute of Applied Mechanics, Poznan University of Technology, Poznan, Poland
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5 Poznan Supercomputing and Networking Center, Poznan, Poland

Obtaining interval enclosures for the solutions of partial differential equations (PDE) is not
a simple task. Several researchers have proposed various methods of bounding the solution
functions (see, e.g. [4]). The authors of this study propose the interval method for solving a
parabolic partial differential equation known as the heat equation of the form:

∂u

∂t
(x, t)− α2 ∂

2u

∂x2
(x, t) = 0, 0 < x < L, t > 0, (1)

with the following initial and boundary conditions:

u (x, 0) = f (x) , 0 ≤ x ≤ L,

u (0, t) = ϕ1 (t) , u (L, t) = ϕ2 (t) , t > 0.

The finite difference schemes are used to obtain the required interval formulas and then the
interval realization of very effective variety of direct Cholesky method is applied for solving
the system of linear equations of the special positive definite, tridiagonal and symmetric
matrices. The interval method shown in the paper includes the error term of the corresponding
conventional method. In the theoretical approach presented this error is bounded by some
interval values. Together with interval floating-point arithmetic it allows the user to obtain a
guaranteed result. The theoretical considerations are supported by results of some numerical
experiments. Note that the authors are going to investigate the use of symbolic methods for
the purpose of improving the accuracy and efficiency of the interval methods [1-4].

Keywords
interval computations, partial differential equations, heat equation, finite differences, sym-
bolic transformation
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On the application of directed interval arithmetic
for solving elliptic BVP

Tomasz Hoffmann1, Andrzej Marciniak2,3, Malgorzata A. Jankowska4
[tomhof@man.poznan.pl]

1 Poznan Supercomputing and Networking Center, Poznan, Poland
2 Institute of Computing Science, Poznan University of Technology, Poznan, Poland,
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The properties of directed interval arithmetic are interesting, as due to the existence of the op-
posite and inverse element, it allows us to perform computations in a way that enables a cer-
tain reduction in the width of the end-intervals – the solution. We performed experiments
to solve some elliptic boundary value problems, which confirmed that the intervals obtained
after applying this arithmetic are narrower than in the case of proper interval arithmetic.
An attempt is also made to refer to a method that allows a rigorous verification of the ex-
istence of PDE solutions and finding their estimate supported by mathematical proof. Such
a method for elliptic equations is the Nakao method using the FEM model. The results ob-
tained with both types of methods, i.e. the proposed interval methods and the interval-based
(but not fully interval) Nakao method, were compared.

Keywords
Directed Interval Arithmetic, Boundary Value Problem, Finite Difference Methods, Verified
Computing

References
[1] MARKOV, S., On Directed Interval Arithmetic and Its Applications. he Journal of Uni-
versal Computer Science pp. 515–526, Springer (1996).
[2] NAKAO, M. T., A Numerical Approach to the Proof of Existence of Solutions for Elliptic
Problems. Japan Journal of Applied Mathematics 5(2), p.313 (1988).
[3] NAKAO, M. T., PLUM, M., AND WATANABE, Y., Numerical Verification Meth- ods and
Computer-Assisted Proofs for Partial Differential Equations.Springer Singapore (2019).
[4] POPOVA, E. D., Extended Interval Arithmetic in IEEE Floating-Point Environmen. In-
terval Computations 4, pp. 100–129 (1994).

90



Applications of Computer Algebra – ACA 2023
Warsaw, Poland, | July 17-21, 2023
Session “Computer Algebra Systems and Interval Methods”

Symbolic and algorithmic differentiation for the
interval algorithm of training contracting

autoencoders

Bartłomiej Jacek Kubica1 [bartlomiej_kubica@sggw.edu.pl]

1 Institute of Information Technology, Warsaw University of Life Sciences – SGGW, Warsaw,
Poland

Autoencoders (AE) are a specific kind of unsupervised (or semi-supervised) feed-forward
neural networks.

The AE consists of at least three layers: the input layer (x), the hidden layer (h), and the
output layer (y). Its essence is to reproduce the input on the output, but not in a trivial
manner: y = x, but approximately. Depending on the structure and dimensionality of the
hidden layer, the input can be reconstructed more or less precisely, and – as we shall see –
the reconstruction process will capture various features of the data.

An AE can be logically decomposed into two parts:

• the encoder, transforming the input x to the representation of data, in the hidden layer:
h = f(x),

• the decoder, transforming the representation to the data from the original space: y =
f∗(h).

The f∗ function in the above description is some sort of an ‘approximate inverse’ of f .

A specific kind of AEs are contractive autoencoders (CAE). Their essence is to train the AE
so that we had h = f(x), and the derivative of f was close to zero at the training points.
Usually, it is obtained by adding the the loss function a regularization term, penalizing a
norm of the Jacobi matrix of f .

Why would an AE satisfy such a condition? What do derivatives close to zero imply?

The idea is pretty similar (but not mathematically equivalent!) to a denoising AEs: when
the derivative of f is close to zero, adding a noise to x does not change its representation
significantly.
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In the paper, an interval approach [1] to training such AEs is going to be presented. The
method is similar to the one from [2], and it is directly based on the one described in [3], but
now it is necessary to seek points for whichthe gradient of a given function is close to zero.

For this purpose, hull-consistency (HC) enforcing procedures from ADHC 2.2 [4] are not
sufficient. These procedures allow to enforce HC for a function, but not for its derivative(s).

A novel procedure is presented, performing symbolic transformations of the expression tree
generated by ADHC. Hence, we obtain the new expression tree(s), representing the deriva-
tive(s) of the function under consideration; now, HC can be enforced on the gradient-related
constraints.
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interval computations, constraint satisfaction, algorithmic differentiation, symbolic differen-
tiation, contractive auto-encoders
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Symbolic recipes for solving nonlinear systems of
equations with interval methods
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1 LS2N, Nantes Université, France

Interval branch-and-prune algorithms are able to find all the solutions of a nonlinear system
of equations and to certify the results [1]. To this end, they combine branching steps and
reduction techniques like local consistency techniques, constraint propagation, the interval
Newton operator, and linear relaxation based methods. At different levels, all these tech-
niques strongly depend on the symbolic expressions of nonlinear systems that may lead to
pessimistic interval computations. In this talk, we will review some of these methods along
with expression sharing in directed acyclic graphs [2] and symbolic rewriting of expressions
and systems [3]. We will study the specifc problem of finding all the roots of a complex
polynomial using trigonometric forms.
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Inferring stochastic models of gene transcription
from initiation events by computer algebra

Ovidiu Radulescu1 [ovidiu.radulescu@umontpellier.fr]
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Gene transcription regulation can be modelled using finite state Markov chains. Through
live imaging experiments, we obtain the sequence of transcription initiation events and find
the distribution of the time between events, the so-called phase-type distribution. We dis-
cuss the following inverse problem: knowing the phase-type distribution, can we determine
the transition rate parameters of the Markov chain? In the non-degenerate case when the
characteristic equation of the transition matrix has distinct eigenvalues, the phase-type distri-
bution is multi-exponential. We reduce inverse problem to a system of polynomial equations
whose coefficients are symmetric polynomials in the parameters of the multiexponential dis-
tribution. For special Markov chains this system has unique solutions expressed as rational
symmetric functions of the distribution parameters. We use the algebraic Thomas decompo-
sition to find solutions for all the three and four states Markov chain models. Analysis of the
inverse problem shows that multiple interpretations of the data are possible, a phenomenon
known as the “Rashomon effect”: different Markov chain models predict exactly the same
phase-type distribution.

Keywords
Gene transcription
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Duality in mass-action networks

Alexandru Iosif1 [alexandru.iosif@urjc.es]
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We introduce maximal invariant polyhedral supports and, for conservative mass-action net-
works that do not have two species with exactly the same rates, we prove that the set of
preclusters is dual to the set of maximal invariant polyhedral supports. Precusters are special
cases of the clusters introduced in 2012 by Conradi and Flockerzi [1]. In author’s thesis [2]
it is given, in terms of precusters, a sufficient condition for the existence of positive steady
states. Given the close relation between maximal invariant polyhedral supports and siphons,
we conjecture that there is a duality relation between siphons and clusters, which, we belive,
based on [3], might lead to uniqueness of Birch points in systems with small codimensional
invariant polyhedra.

Keywords
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Phylogenetic invariants for time-reversible models

Marta Casanellas1,2, Roser Homs Pons1, Angélica Torres1 [atorres@crm.cat]
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The main goal of Phylogenetics is to find evolutionary relations between biological entities.
These relations are inferred from data and are encoded in a graph called a phylogenetic tree.
The leaves of a phylogenetic tree represent the observed species, and each interior node cor-
responds to a common ancestor of the species descending from it.

Available data can come from DNA sequences or aminoacid sequences of different species,
but once we have the data ¿How to determine which phylogenetic tree accurately represents
the evolutionary relations hidden in the data? Generally there are two steps to solve this
question: Model selection and phylogenetic reconstruction. On the first step the main goal is
to decide how the transition of species occurs, and on the second step the goal is to build the
phylogenetic tree.

In this talk we explore how understanding the phylogenetic variety helps us both with model
selection and phylogenetic reconstruction. We will start by introducing phylogenetic varieties
and time-reversible models, then we present a general framework to study the phylogenetic
reconstruction process for time-reversible models. Our main example will be the Tamura
Nei model for DNA, for which we give phylogenetic invariants that allow us to distinguish
whether a tree fits the data when the evolution occurs under a time-reversible model.

This is joint work with Marta Casanellas and Roser Homs Pons.
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Divide & Control: an efficient
decomposition-based approach towards the
control of asynchronous boolean networks
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We consider the problem of computing a minimal subset of nodes of a given asynchronous
Boolean network that perturbed in a single-step drive its dynamics from an initial state to
a target attractor. We refer to this problem as the source-target control of Boolean networks.
Due to the infamous phenomenon of state-space explosion, a global approach that performs
computations on the entire network may not scale well for large networks. We take the view
that efficient control algorithms for such networks must exploit both the structure and dy-
namics of the networks. With this, we derive a decomposition-based solution to the minimal
source-target control problem and we show that it can be significantly faster than the existing
approaches on large networks. We apply our solutions to both real-life biological networks
and randomly generated networks, demonstrating the efficiency and efficacy of our approach.
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Gene regulatory network inference with joint
multi-omic single-cell data to learn dynamic cell

state transitions

Adam L. MacLean1 [macleana@usc.edu]
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Single-cell genomics offer unprecedented resolution with which to study cell fate decision-
making. We present new tools to infer gene regulatory networks (GRNs) controling cell fate
decisions and model their multiscale dynamics. We introduce popInfer, single-cell multi-
modal GRN inference via regularized regression, and demonstrate its potential for network
discovery. Through application to hematopoiesis, we discover new gene interactions regulat-
ing early fate decisions during stem cell differentiation that are profoundly affected by diet
and age.
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Five equivalent representations of a phylogenetic
tree

Jiayue Qi1, Josef Schicho1 [jiayue.qi@dk-compmath.jku.at]

1 Johannes Kepler University Linz, Research Institute for Symbolic Computation.

A phylogenetic tree is a tree with a fixed set of leaves that has no vertices of degree two.
To our knowledge, there are four other representations of such a tree: sets of partitions, sets
of cuts, crossing relations, and equivalences of triples. In this paper, we focus on these four
representations, and show that they are all equivalent. In particular, we give the conversions
in between them, which builds the bridges that eventually connect the five representations.

Keywords
phylogenetic tree, equivalent representations, conversions between different representations
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Computing sign vector conditions for existence
and uniqueness of equilibria of chemical reaction

networks
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In [1], conditions for existence and uniqueness of equilibria of chemical reaction networks
with generalized mass-action kinetics for all parameters are introduced. The conditions for
uniqueness and (robust) existence are formulated in terms of sign vectors of subspaces corre-
sponding to the stoichiometric coefficients and the kinetic orders of the reactions. In this talk,
we will discuss how these sign vector conditions can be checked algorithmically, utilizing
techniques based on oriented matroids. We illustrate our methods by examples of chemical
reaction networks with generalized mass-action kinetics using our implementation in Sage-
Math [2].

Keywords
sign vectors, oriented matroids, robustness, generalized mass-action kinetics, deficiency zero
theorem
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How to find or exclude bifurcations in
biochemical systems?

Nicola Vassena [nicola.vassena@uni-leipzig.de]

Leipzig University

Bifurcation theory is a standard method to detect dynamical behaviors of interest, such as
multistationarity and oscillations. The localization of bifurcations in large parametric sys-
tems still requires both rigorous criteria and some informal intuition. In this talk we present a
symbolic approach based only on an algebraic analysis of the Jacobian matrix. The spectral
configuration of the Jacobian matrix at an equilibrium is a necessary condition for a certain
bifurcation to happen. For example, a simple eigenvalue zero points at saddle-node bifur-
cations and consequent multistationarity, while purely imaginary eigenvalues hint at Hopf
bifurcations and oscillatory behavior.

We investigate how the network structure infers the spectrum of the Jacobian. We show
that such an approach is effective to detect zero or purely-imaginary eigenvalues for systems
endowed with Michaelis-Menten kinetics and Hill kinetics. Moreover, the same approach
can be also used to exclude bifurcations for systems endowed with mass action, Michaelis-
Menten, and Hill kinetics. The talk is based on results from [1] and [2].

Keywords
Chemical reaction networks, Bifurcation analysis, Symbolic approach, Michaelis-Menten ki-
netics, Function-free
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Generic dimension of varieties arising in reaction
network theory and 3D genome reconstruction
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Systems of polynomial equations with unknown parameters appear in many biological con-
texts, and a common theme in applied algebraic geometry is to investigate how various geo-
metrical properties of the solution set vary with the parameters. One of the most fundamental
such properties is the dimension, and in this talk, I will discuss various algebraic methods for
determining the generic dimension, based on the concept of nondegenerate solutions – also
for systems that are too large for standard Gröbner basis techniques to be feasible.

Two biological applications will be highlighted. First, we will focus on steady state varieties
in reaction network theory, for which we in [3] find computational criteria for when the
generic codimension coincides with the rank of the network. As a corollary, we prove that
under the assumption of mass action kinetics, all weakly reversible networks have finitely
many steady states for generic rate constants and any total concentrations, which settles a
question posed by Boros, Craciun and Yu in [1]. Finally, we turn to the problem of 3D
genome reconstruction, where we in [2] employ similar techniques to computationally prove
finite identifiability from Hi-C data for diploid organisms, provided that maternal and paternal
DNA sequences can be distinguished for a small number of genomic loci [2].

This is a combination of joint works with Diego Cifuentes, Jan Draisma, Elisenda Felu,
Annachiara Korchmaros, Kaie Kubjas and Beatriz Pascual-Escudero.
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Hopf bifurcations in some biochemical models
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Existence of periodic oscillations is an important feature of various chemical reaction models.
The most common method to find such bifurcations is the investigation of Hopf bifurcations.
We discuss an approach based on the elimination theory of computational algebra to find con-
ditions for the existence of Hopf bifurcations in polynomial systems of ordinary differential
equations.

We apply the approach to study limit cycle bifurcations in a three-dimensional Lotka-Volterra
system which models a food web of three species, one of which is an omnivore. For the model
we first find necessary and sufficient conditions for existence of a pair of pure imaginary
eigenvalues for the Jacobian of the system at the stationary point with positive coordinates.
Then it is shown that the system can have two small limit cycles bifurcating from the singular
point.

Models related to the double phosphorylation of mitogen-activated protein kinases are dis-
cussed as well.
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CAD adjacency computation using validated
numerics

Adam Strzebonski1 [adams@wolfram.com]
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We will present an algorithm for computation of cell adjacencies for well-based cylindrical
algebraic decomposition. The algorithm determines cell adjacency information using vali-
dated numerical methods similar to those used in CAD construction, thus computing CAD
with adjacency information in time comparable to that of computing CAD without adja-
cency information. Our implementation in Mathematica uses cell adjacency information to
compute topological operations e.g. closure, boundary, and connected components. Other
applications include computing topological properties e.g. homology groups, visualization
and path planning.

Keywords
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nected components
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Classifications of prime ideals and simple modules
of the Weyl algebra A1 in prime characteristic
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Let K is an arbitrary field of characteristic p > 0. Classifications of prime, completely
prime, maximal and primitive ideals and simple modules are obtained for the Weyl algebra
A1 = K〈x, ∂ : ∂x − x∂ = 1〉, the skew polynomial algebra A = K[h][x;σ] and the skew
Laurent polynomial algebra A := K[h][x±1;σ] where σ(h) = h− 1. The quotient rings (of
fractions) of prime factor algebras of the algebras A1, A andA are described. They are either
fields or matrix algebras over fields or cyclic algebras.

Keywords
Weyl algebra, prime ideal, central simple algebra

References
[1] V. V. BAVULA, Classifications of prime ideals and simple modules of the Weyl algebra
A1 in prime characteristic. Tokyo J. Math.l 44(1), 1–31 (2023).

105



Applications of Computer Algebra – ACA 2023
Warsaw, Poland, | July 17-21, 2023
Session on “Computational Difference and Differential Algebra and its Applications”

Multiplicity of arc spaces of fat points

Rida Ait El Manssour1, Gleb Pogudin2, [rida.manssour@mis.mpg.de]
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many
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d’Orves, 91120, Palaiseau, France

Consider the algebraic equation xm = 0, it defines a point on the affine line with multiplicity
m. This corresponds to the dimension of the k-vector space k[x]/〈xm〉. If we consider the
differential ideal of generated by xm denoted by 〈xm〉(∞) ⊆ k[x(∞)], then this dimension is
infinite (i.e. dim k[x(∞)]/〈xm〉(∞) =∞).

The infinite-dimensional algebra k[x(∞)]/〈xm〉(∞) admits a natural filtration by finite dimen-
sional algebras k[x̄, x̄′, . . . , ¯x(h)]. Therefore, we prove that dim k[x̄, x̄′, . . . , ¯x(h)] = mh+1

[1], which generalizes the concept of multiplicity to arc spaces. The proof of this result is
based on determining the initial ideal of 〈xm〉(∞) with respect to lexicographical ordering.
The description of the initial ideal was previously conjectured by Afsharijoo [2, Section 5],
which serves in finding new partition identities generalizing Roger-Ramanujan identities.

At the end, we provide computational experiments for computing the growth multiplicities of
the arc space of different zero-dimensional ideals.
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A new type of difference Gröbner bases and their
applications

Alexander Levin [levin@cua.edu]
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USA

Keywords
Difference module, effective order, Gröbner basis, dimension polynomial

We introduce a new type of Gröbner bases in free difference modules that are associated with
a reduction respecting the effective order of module elements. (We generalize the notion of
effective order of an ordinary difference polynomial (see [1, Chapter 2, Section 4]) to free
difference modules with several translations.) Then we establish some properties of such
Gröbner bases and present a Buchberger-type algorithm for their computation. Using the
obtained results, we prove the existence and give a method of computation of a bivariate
dimension polynomial of a finitely generated difference module that carries more module
invariants than the univariate difference dimension polynomial introduced in [3] and studied
in [2], [4] and in a number of papers. We also show how the new invariants can be applied to
the isomorphism problem for difference modules and to the equivalence problem for systems
of algebraic difference equations.
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On the Schmidt–Kolchin conjecture

Antoine Etesse1 [antoine.etesse@ens-lyon.fr]

1 Institut de Mathématiques de Toulouse, Université Paul Sabatier, Toulouse, France

In this talk, we will discuss the Schmidt–Kolchin conjecture on differentially homogeneous
polynomials, that we recently proved in [1]. This conjecture predicts that the vector space of
degre d differentially homogeneous polynomials in n variables is of dimension nd. We will
also discuss some geometric implications of this result.

The first positive result towards the conjecture was obtained by Reinhart in [2], where he
settled the case n = 2. The strategy followed by Reinhart was, in essence, very computa-
tional. Roughly speaking, he exhibited a candidate for the basis, and described an inductive
procedure justifying that every differentially homogeneous polynomial could be expressed as
a linear combination of elements in the basis. The inner complexity of this strategy made it
difficult to adapt in higher dimensions.

Our strategy takes advantage of a natural action of the general linear group on the space
of differentially homogeneous polynomials. Representation theory then allows to reduce
drastically the complexity of the problem, making it, somehow, tractable.
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Differentially homogeneous polynomials, Representation theory.
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Specializations of normal forms in differential
Galois theory
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1 Institut für Mathematik, Universität Kassel, D–34109 Kassel, Germany
2 Lehrstuhl für Algebra und Zahlentheorie, RWTH Aachen University, D–52056 Aachen,
Germany

Let C be an algebraically closed field of characteristic zero and let G(C) be one of the
classical group of Lie type Al, Bl, Cl, Dl or G2 (here l = 2). Moreover, let C{v} be
the differential polynomial ring in l differential indeterminates v = (v1, . . . , vl) over C and
denote by C〈v〉 its field of fractions. In [7,8] we introduced the construction of a general
Picard-Vessiot extension E of a differential fieldF of differential transcendental degree l over
C having G(C) as its differential Galois group. This extension can be seen as an analogue
to the well-known general extension in classical Galois theory whose Galois group is the
symmetric group and is defined by the general polynomial equation with coefficients the
elementary symmetric polynomials. The field E in our construction is a Liouvillian extension
of the differential field C〈v〉 with differential Galois group a Borel group B of G. It is
defined by the matrix ALiou(v) in the Lie algebra of the Borel group, which is the sum of
the basis elements of the root spaces belonging to the positive simple roots together with
a parametrization of the Cartan subalgebra by the indeterminates v. For its fundamental
solution matrix b ∈ B(E) and the longest Wey group element w, we found a matrix u in the
maximal unipotent subgroup ofGwith entries inC{v} such that the logarithmic derivative of
Y = uwb is a specific matrix in the Lie algebra of G which was introduced in [7]. To obtain
the base field F ⊂ C〈v〉 we define a group action ofG(C) on E by right multiplication on Y .
The field F is then the differential fixed field under this action. It is differentially generated
over C by Lie rank many differential invariants

s(v) = (s1(v), . . . , sl(v)) ∈ C{v}l

which are differentially algebraically independent over C. We call the defining matrix differ-
ential equation

y′ = AG(s(v))y

for the general extension E of F = C〈s〉 the normal form for G (see [6] for the genericity of
AG(s(v))).

Let C(z) be the rational function field in the indeterminate z with standard derivation d
dz . In

this talk we consider specializations

σ : C(z){s(v)} → C(z), s(v) 7→ f = (f1, . . . , fl)
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of the differential invariants s(v) to l rational functions f = (f1, . . . , fl). We are going to
analyse the Picard-Vessiot extension E of C(z) defined by the specialized equation

y′ = AG(σ(s(v)))y

and its differential Galois group G ⊆ G. To this end we design an algorithm to determine the
smallest standard parabolic subgroup P (with respect to inclusion of subsets of simple roots)
containing a conjugate of G. This implies for the Levi decompositions P = Ru(P )o L(P )
and G = Ru(G) o L(G) that Ru(G) ⊆ Ru(P ) and L(G) ⊆ L(P ). We develop a further
algorithm which computes a maximal differential ideal I ⊂ C{v} containing the differential
ideal

〈s1(v)− f1, . . . , sl(v)− fl〉 ⊂ C{v}.

The field E will then be a Liouvillian extension of the field of fractions of the quotient
C(z){v}/I defined by ALiou(v) where v are the images of v under the canonical projec-
tion. The problem of computing the differential Galois group of an arbitrary differential
equation is theoretically solved (see [5] and [4,9,1], [2,3]), but until today there is no efficient
implementation of such an algorithm. We hope to contribute with this ongoing project to
make the algorithms more efficient at least in the special case of a specialization of a normal
form matrix for a classical group.
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A classification of first order differential equations

V. Ravi Srinivasan, Partha Kumbhakar, Ursashi Roy [ravisri@iisermohali.ac.in]

Department of Mathematical Sciences, IISER Mohali, Punjab, India

Let k be a differential field of characteristic zero with an algebraically closed field of constants
C. In this talk, we initiate a study of first order nonlinear differential equations f(y, y′) = 0,
where f is an irreducible polynomial in two variables, using the theory of strongly normal
extensions. We prove that if f(y, y′) = 0 has a nonalgebraic solution in a differential field
extension E of k that can be resolved into a tower of differential fields

k = E0 ⊂ E1 ⊂ · · · ⊂ En−1 ⊂ E,

where each Ei is a strongly normal extension of Ei−1 then every nonalgebraic solutions must
be an algebraic function of a solution of some Riccati differential equation or a Weierstrass
differential equation defined over an algebraic closure of k. We also prove various results
concerning the algebraic dependence of nonalgebraic solutions of a first order differential
equation. We will also explain the connections between our work and the recent works by
Noordman et al. and Freitag et al on this topic.
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Local integrability of polynomial vector fields
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We discuss the problem of local integrability of polynomial vector fields in a neighborhood
of a resonant singular point. The main attention is paid to the case of planar vector fields with
1 : −1 resonant singular points, that is, vector fields of the form

ẋ = x+ P (x, y), ẏ = −y +Q(x, y), (1)

where P and Q are polynomials without constant and linear terms. An efficient method to
compute the necessary conditions for existence in a neighborhood of the origin of (1) of an
analytic first integral of the form

Ψ(x, y) = xy +
∑

k+m>2

ψkmx
kyk,

is presented. It is based on a specific grading of the formal power series module and reducing
to a difference equation. A few mechanisms of integrability are described. A connection to
the local 16th Hilbert problem is mentioned.
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Jet schemes of Pfaffian ideals
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Jet schemes and arc spaces received quite a lot of attention by researchers after their introduc-
tion, due to J. Nash, and established their importance as an object of study in M. Kontsevich’s
motivic integration theory. Several results point out that jet schemes carry a rich amount of
geometrical information about the original object they stem from, whereas, from an algebraic
point of view, little is know about them.

In this talk we consider the ideal I2r generated by the pfaffians of size 2r in an n×n generic
skew-symmetric matrix and, inspired by [2], we study algebraic properties of the correspond-
ing k-th jet schemes ideal In,kr . In particular we determine under which conditions the cor-
responding jet scheme varieties are irreducible. Moreover in the case n = 2r we prove that
for every k the natural generators of In,kr are a Gröbner basis, and that In,kr defines a Cohen
Macaulay domain of multiplicity rk. Conjectures and open questions will be stated.
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Binary curves of genera four and five
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In [1], Xarles makes a census of all genus-4 curves defined over F2, the field with two ele-
ments, up to isomorphism. Inspired by that, we compute in [2] the isomorphism classes of
genus-5 curves over F2, which can be either hyperelliptic, trigonal, or whose canonical model
is a complete intersection of three quadrics in P4. In addition, for each curve, we determine
its automorphism group over F2.
While some analogous ideas to Xarles’s can be used for curves of the first two types, the
third type of curves and their automorphism groups need special attention. Our algorithm for
computing the isomorphism classes of non-hyperelliptic, non-trigonal curves is based on the
exhaustion of eligible triples of quadratic polynomials in five variables and uses some elemen-
tary ways of expressing when two such triples can define isomorphic curves and what those
isomorphisms can be. Namely, being canonical, the isomorphism among them is induced by
an element of PGL5(F2), so that we should find a subset of a reasonable size of the set of all
such triples, and for every two triples, a subset of PGL5(F2) whose elements can establish
a potential isomorphism among the curves they define. As an outcome of the SAGEMATH
implementation available at [3] and the data we obtain, we compute the weighted number of
such curves and show the existence of any eligible Newton polygon of height 10 for them.
Furthermore, we analyze in [4] the data provided by Xarles and the data of isogeny classes
of abelian fourfolds over F2 from [5]. Essentially, by comparing them, we show that not all
the supersingular principally polarized abelian fourfolds over F2 are Jacobians and use that
to determine the dimensions of the Newton polygon strata inside the 2-rank zero locus of the
moduli space of genus-4 curves in characteristic two.
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Free Resolutions and Generalized Hamming
Weights of binary linear codes
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Let Fq be a finite field with q elements. Given a k-dimensional linear code C ⊆ Fn
q , the

r-th Hamming weight of C is the minimum of the support sizes of all the r-dimensional
subcodes of C, for r ∈ {1, . . . , k}. The study of the Generalized Hamming Weights (GHWs)
has been motivated by several applications in cryptography [4]. For instance, these weights
characterize the code performance on a wire-tap channel. There are few families of codes
for which it is known the complete generalized weight hierarchy as for example: first-order
Reed-Muller codes, binary Reed-Muller codes or Hamming code and its dual.

In their seminal paper [3], Johnsen and Verdure showed how the GHWs of a linear code can
be computed by means of a minimal graded free resolution of the monomial ideal associated
to the set of codewords of minimal support of the code. This paper produced a great avenue
of research. One of the main drawbacks of Johnsen and Verdure’s approach is that the set of
codewords of minimal support is usually a huge set and it is expensive to compute. Hence, it
would be desirable to find smaller structures providing information on the GHWs.

In the present work, we consider binary codes and we explore what information on the GHWs
can be extracted from the so-called test sets, intrduced by Borges-Quitana et al. in [1]. These
sets are constructed from the support of the binomials in a Gröbner basis of an ideal associated
to the code with respect to a graded monomial ordering. In [1] the authors prove that one can
extract a big amount of relevant information of the code from them. In particular, they can be
used for decoding and for computing the minimum distance of the code (and, thus, the first
GHW). In this work we show how one can also compute the second GHW and provide upper
bounds on the whole hierarchy of GHWs of a binary linear code from a test set. We finish by
presenting several conjectures and open problems concerning the computation of the GHWs.

The results of this talk are included in [2].
1The author is partially supported by "Plan de incentivación de la actividad investigadora 2023" of Universidad

de La Laguna and by the grant PID2019-105896GB-I00 funded by MCIN/AEI/10.13039/501100011033
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Free resolutions are an important tool in algebraic geometry for the analysis of modules over
polynomial rings and their quotient rings. Minimal free resolutions are unique up to isomor-
phism and contain homological invariants. It is known that Pommaret bases of ideals in the
polynomial ring induce finite free resolutions and that the Castelnuovo-Mumford regularity
and projective dimension can be easily obtained already from the Pommaret basis. In this
talk, we will introduce the concept of Pommaret-like bases and how these bases can be used
for the analysis of infinite free resolutions over Clements–Lindström rings.

We work over the quotient rings of a polynomial ring R = K[x1, . . . , xn] over a field K.
Thus given a homogeneous ideal I ⊆ R, we make the computations in the ring R/I. A
special case for I = {0} is the ring R itself. We write T for the set of all terms xµ =
xµ1

1 · · ·xµnn ∈ R with µ = (µ1, . . . , µn).

We construct free resolutions of homogeneous ideals J E R/I. A free resolution F of J
is given by finitely generated free R/I-modules F0, F1, . . . and homogeneous R/I-linear
maps δ0, δ1, δ2, . . . as in the following diagram:

F : · · · δm+2−→ Fm+1
δm+1−→ Fm

δm−→ Fm−1
δm−1−→ · · · δ2−→ F1

δ1−→ F0
δ0−→ J → 0,

with im(δ0) = J and im(δm+1) = ker(δm) for all m ≥ 0. The collection {δm}m≥0 of
maps is called the differential of the resolution. Leaving aside degree shifts, we can write
Fm = (R/I)rm for m ≥ 0. Each δm is described by the images δ(~ei), i ∈ {1, . . . , rm};
equivalently, δm is represented by a matrix Dm ∈ (R/I)rm−1×rm , whose i-th column is
δm(~ei). Moreover,Dm ·Dm+1 = 0 for allm. The setG := {δ0(~e1), . . . , δ0(~er0)} is a homo-
geneous generating set of J and the columns of D1 are a homogeneous generating set G1 of
the first syzygy module Syz(G). Generally, the set Gm of columns of Dm is a homogeneous
generating set of the iterated syzygy module Syzm(G). For a more detailed introduction to
infinite graded free resolutions and an overview of associated research questions, see [7].
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Pommaret-like bases are an adapted form of Pommaret bases, which are types of involutive
bases. Involutive bases are Gröbner bases with special combinatorial properties introduced
by Zharkov and Blinkov [10] and further studied by Gerdt and Blinkov [4]. An overview of
theory, algorithms and applications can be found in [9]. They arise via a restriction of the
usual divisibility relation of terms to an involutive division.

We shortly describe the Pommaret division. The class of a term 1 6= xµ ∈ T with µ =
(µ1, . . . , µn) is defined as the index cls(xµ) = min {i | µi 6= 0}. A variable xi is Pommaret
multiplicative for xµ, if i ≤ cls(xµ). Not every monomial ideal has a finite Pommaret basis;
those that do are called quasi-stable. A polynomial ideal I is in quasi-stable position, if its
leading ideal with respect to a term-order is quasi-stable.

The Pommaret-like division is based on the Janet-like division introduced by Gerdt and
Blinkov [5]. LetU ⊂ T be a finite set of terms. For any term u ∈ U and any index 1 ≤ i ≤ n,
a non-multiplicative power of u for the Janet-like division at the variable xi exists, if there
is a term v ∈ U with degj(v) = degj(u) for all i < j ≤ n and degi(v) > degi(u). The

non-multiplicative power is then given by xhi(u,U)
i , where hi(u, U) is the minimal positive

value of degi(v)−degi(u) as v ranges over all terms in U with the properties just mentioned.
The set of all non-multiplicative powers of u ∈ U is denoted by NMP(u, U).

Definition 1. The Pommaret-like division P assigns to each term t ∈ T contained in a
finite set of terms U ⊂ T , the following non-multiplicative powers: (1) All Janet-like non-
multiplicative powers xpaa with a > cls(t). (2) The variables xb with b > cls(t) for which
there exists no Janet-like non-multiplicative power.

For a given monomial ideal, a finite Pommaret-like basis exists if and only if the ideal is quasi-
stable. This basis is in general smaller than the Pommaret basis of the same ideal. We extend
the Pommaret-like division also to ideals in monomial quotient rings. For a quasi-stable ideal
I and a monomial ideal J ⊆ R/I, a Pommaret-like basis for J exists if and only if J is
the image of a quasi-stable ideal in R. We write PI for the Pommaret-like division in R/I.
To emphasize that we are working in a quotient ring, we speak of a relative Pommaret-like
basis. In [6], the syzygies of relative Pommaret bases were analysed, using a suitable module
term ordering and applying a construction due to Schreyer [8]. We generalize this to relative
Pommaret-like bases in quotient rings R/I defined by an irreducible quasi-stable monomial
ideal I. By iteration, we obtain a free resolution together with Pommaret-like bases for the
first and all higher syzygy modules. These Pommaret-like bases are reduced Gröbner bases.

Adapting the definitions due to [1] to our conventions on variable orderings, we say that an
irreducible, non-zero monomial ideal I E R is Clements-Lindström, if its minimal generat-
ing set is of the form {xaii , x

ai+1

i+1 , . . . , x
an
n } with 2 ≤ an ≤ an−1 ≤ · · · ≤ ai+1 ≤ ai. We

callR/I a Clements-Lindström ring.

Theorem 2. Let I E R be a Clements-Lindström ideal and let J ⊃ I be a monomial ideal
generated by the minimal Pommaret-like basis H ⊂ (J \ I) ∩ T relative to I. Assume that
H is also the minimal monomial generating set of J relative to I and that for each t ∈ H
and xpaa ∈ NMPPI (t,H), the unique PI-divisor s ∈ H of t ·xpaa fulfils cls(s) > cls(t). Then
the free resolution of J overR/I induced by the basis H is the minimal free resolution of J
overR/I.

Let J ⊇ I be any homogeneous polynomial ideal in quasi-stable position relative to I with
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respect to the degrevlex term ordering. Moreover, assume that the minimal Pommaret-like
basis of J relative to I is a minimal homogeneous generating set and that the resolution
induced by this Pommaret-like basis over the ring R/I is minimal. We construct a basis for
the bigraded freeR/I-module supporting the resolution, only using the Pommaret-like basis
of the leading ideal of J relative to I, and also give a formula for the Poincaré series of the
resolution using only these data. Note that the Poincaré series encodes the bigraded Betti
numbers of the resolution.

Consider a Pommaret-like basisH relative to I = 〈xhkk , x
hk+1

k+1 . . . , xhnn 〉. We write supp(I) :=
{xk, xk+1, . . . , xn}. The induced free resolution is supported on free R/I-modules. The
first free R/I-module M0 has a basis that we enumerate as {~eα | hα ∈ H}. The ideals
Jα = 〈xdii | x

di
i · ~eα ∈ lt(Syz(H))〉 are irreducible and we write supp(Jα) for the set of

variables appearing in their respective generating sets. For the r-th module Fr in the reso-
lution, we obtain a basis made of elements of the form ~eα,xµ , where xµ is a term of degree
r with cls(xµ) ≥ cls(tα). Moreover, xµ is supported on supp(Jα), and its projection onto
supp(Jα) \ supp(I) is square-free.

We apply our results to square-free Borel ideals and show that the minimal free resolution for
such ideals found in [3] is a Pommaret-like induced resolution. Finally, we note that if we
apply our construction to Pommaret-like bases in the polynomial ringR, we obtain for some
classes of quasi-stable ideals an explicit formula for the differential of the Pommaret-like
induced resolution. This construction generalizes, in particular, resolution formulas for stable
and quasi-stable monomial ideals due to Eliahou and Kervaire [2] and Seiler [9], respectively.
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Consider the projective space PG(2n+1, q) over the finite field Fq . Let V be the associated
vector space. The symplectic polar spaceW(2n + 1, q) is given by all totally isotropic sub-
spaces of V with respect to a non-degenerate alternating form of V . They are the subspaces
that are contained in their orthogonal complement with respect to such form.

The projective subspaces of maximal dimension that are contained inW(2n + 1, q) are the
generators ofW(2n+ 1, q) and, given them, we can define the main objects of this talk: the
m-ovoids. A m-ovoid ofW(2n + 1, q) is a set O of its points such that all generators meet
O in exactly m points.

Point sets of this kind are 2-character sets, namely each hyperplane has only two possible
intersections with these points. This makes the sets equivalent to projective codes with two
weights and also such sets give rise to strongly regular Cayley graphs.

The study of m-ovoids has a long history, starting from B. Segre [1], Tits [2] and Suzuki [3].
Thas [4], in 1981, proved thatW(2n + 1, q) has an -ovoid (that is, m-ovoid with m = 1) if
and only if n = 1 and q is an even prime power, while Shult and Thas [5] defined for the first
time m-ovoids in 1994 and then many constructions followed, for example via field reduction
[6] or strongly regular graphs [7].

In this talk we concentrate on the even case showing the existence of an m-ovoid ofW(2n+

1, q) with m = qn−1
q−1 , given by an elliptic quadric of PG(2n + 1, q) not polarizing to the

symplectic polar space.

Moreover, we find out a new class of (q+1)−ovoids ofW(5, q) and a classification if q = 2.

The talk refers to the paper [8], joint work with Francesco Pavese (Politecnico di Bari).
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Gröbner bases’s theory plays an important role in Computer Algebra and many applications
have been solved by considering them as a preprocessing, and saying "if we have the Gröbner
basis, then the problem is easily solved". This is undoubtedly true, but it does not take into
account that finding a Gröbner basis is not always an easy task. The computation can become
computationally hard and there are cases in which it is even infeasible.

Luckily, there are practical problems for which Gröbner bases are not the only way to get a
solution, and this allows us to switch to a new paradigm: Degröbnerization [1].

In Degröbnerization we completely change perspective in the algebraic representation of our
problems, substituting the prior representation, based on polynomial ideals to a representation
given by quotient algebras, expressed via a vector-space basis and multiplication (Auzinger-
Stetter) matrices.

This has the immediate advantage to open to new operational methods, that base on linear
algebra and combinatorics and that can provide efficient solutions to (some of) the aforemen-
tioned practical problems. One of them is data modelling, that we face in this talk from the
point of view of the application to reverse engineering for gene regulatory networks, improv-
ing the Computer Algebra method given by Lauenbacher and Stigler [2].

In such context normal forms of polynomials modulo the ideal of some data points is needed.
We show that the problem can be faced without even introducing the ideal of points, but only
relying on the points themselves.

In particular, only combinatorial methods (such that the use of trees to compare the coordi-
nates of data points, and Bar Codes), evaluations and linear algebra methods (matrix inver-
sion, matrix multiplications) are the tools needed to construct a model and we show abstract
computational complexity advantages as well as some implementation details.

Keywords
Degroebnerization, reverse engineering for gene regulatory networks, Bar Codes
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The two conferences presented here are part of a series of articles in the context of Degröb-
nerization [1,4-8], a research topic proposed at the previous ACA [1] and are both devoted to
two of the main tools of Degröbnerization:

• Cerlienco–Mureddu Correspondence [9-11] of which in [3] we describe our implemen-
tation based on a political change of perspective; we represent the algebraic structure
related to a (finite) set of points as a quotient algebra expressed via a vector-space and
Auzinger–Stetter multiplication matrices [12].

• the original Möller Algorithm [13] proceeding by induction on the points1 of which we
presented in ACA2021 [1] and ISSAC’22 [4] a version available for each ideal defined
by (non-necessarily commutative) functionals over any effective ring claiming that it
can use any total ordering (not necessarily a semigroup one) for ordering the terms
needed to express the wanted vector-space basis.

We recall that classical Möller Algorithm

� takes as input a set of functionals ordered in such a way that each initial segment defines
a zero-dimensional ideal thus producing a Macaulay chain [17] of such ideal,

� which is easily produced for a 0-dimensional ideal of polynomials;

� requires at most the evaluation of each such functional to each term needed to express
the wanted vector-space basis and

� produces for each ideal in the Macaulay chain not only its representation as a quotient
algebra expressed via a vector-space and Auzinger–Stetter multiplication matrices,

� but also triangular and separator polynomials can be derived, as in the original version,
as well as the transformation matrix linking them.

1differently from Buchberger-Möller Algorithm [14-16] which proceeds by induction on terms.
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What made us orient our investigation towards a version of the algorithm which at the same
time did not require a semigroup ordering and that covers a wide class of algebras was a
careful reading of [2], which is a strong supporter of both the application of Gröbnerian
technology and Buchberger-Möller Algorithm towards Algebraic Statistics and where we
read

• Another class of statistical models we shall consider are linear models whose vector
space basis is formed by polynomials which are not monomials;

• Example 7 is not a corner cut2 model. However, it is the most symmetric of the models
in the statistical fan. In fact, to destroy symmetry is a feature of Gröbner basis com-
putation, as term orderings intrinsically do not preserve symmetries, which are often
preferred in statistical models .

In this talk, we describe the present version of Möller Algorithm and illustrate its greater
flexibility both via a finite example where the terms are ordered by an ordering which is not
a semigroup one and by giving a symmetric basis of the ideal (Example 7) discussed in [2].
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The classification of algebraic curves and surfaces in a moduli space is a challenging subject
in algebraic geometry. Moduli spaces are spaces that parameterize families of algebraic sur-
faces. They can be used to study the geometry of algebraic surfaces and to compare different
surfaces. Classifying algebraic surfaces and curves is an important task because of the com-
parison between different objects that we study. The moduli space of curves for example, is
a space that parameterizes families of algebraic curves of a fixed genus.

The objects we study and classify can be algebraic curves that are potentially Zariski pairs,
and algebraic surfaces with their related degenerations and fundamental groups.

There are methods that can assist in this classification, for example: topological classifica-
tion, intersection theory, singularities, cohomology, symmetric groups, etc. There are known
algorithmic methods as well, and the choice of a method depends on the specific properties
of the surface or curve in question and the desired level of detail in the classification.

In the mathematical community, the researchers use the computer programs Magma, Singu-
lar, Maple, and so on. These are just a few examples of software packages that can be used
for classifying algebraic surfaces and curves. The choice of software depends on the specific
needs and preferences of the researcher. In our research we use mostly Magma because we
investigate fundamental groups and the Magma is a great tool for this goal. In fact, Magma
can simplify presentations of groups in general, and of fundamental groups in particular, by
means of generators and relations. Therefore in our work we need to use the output we get
from Magma for a manual continuation of simplification, or we can use other programs that
we built especially for determination of our fundamental groups.

Except Magma, we use two self-constructing computer programs in our research. In order
to adapt the difficulty and length of the calculations to our research needs, we can construct
such computer programs that shorten processes and time, and make the results accessible in
an accurate and reliable way. The developed computer programs that are mentioned were
jointly constructed with Uriel Sinichkin (Tel-Aviv University, Israel). Those programs were
implemented in Python.

Before we explain about the two computer programs, we want to give you in the following
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figure an understanding about the level of complexity of the computations and the multiplicity
of singularities. It happens especially when we glue two degeneration or when we consider
a non-planar degenerations. In the figure in particular, we can see two planar degenerated
pieces that are glued together along four edges, and we get a non-planar degeneration with
multiplicity 4 in all singularities.
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Now we explain how classification of algebraic curves and surfaces merges with the use
of these algorithmic methods in our research. We take an algebraic surface embedded in a
projective space and project it with a generic projection onto the projective plane. We get the
branch curve and then we are able to calculate G - the fundamental group of its complement.
This is done using our first self-constructing computer program. This program gives as output
all braids relating to the branch curve and also the presentation of G. We use this output to
find a certain quotient of G, which is going to be the fundamental group of the Galois cover
of the surface. This latter group is an invariant in the classification of algebraic surfaces, and
has a geometric significance because it is equal for all the surfaces in the same connected
component in the moduli space. Details about the fundamental groups of Galois cover of an
algebraic surface and some interesting examples can be found in our works [1,2,3]. In these
recent works, we work with algebraic surfaces with degenerations that have Rk singularities
(for any k) [1], and surfaces that have non-planar degenerations, in which singularities with
high complexity appear [2,3].

Here are the steps of the work with the softwares: Our first self-constructing software gives
us the braids and the presentation of the fundamental group G (applying the van-Kampen
Theorem [4]). The fundamental group of the Galois cover is the quotient of G, and this group
will be the input given to Magma. We admit that Magma is very helpful at this stage because
we give the list of generators and relations of the group as an input, and run the program.
Magma simplifies the presentation and eliminates a few generators from the presentation.
After we have the output, we cannot always use the traditional methods of simplification of
groups (for example, manual simplification and basic group theory), and we need a much
more sophisticated computer program that helps us to determine the group. Therefore, with
our second self-constructing computer program we can define an isomorphism between our
group and some Coxeter quotient. Thanks to our familiarity with Coxeter groups (or perhaps
also Artin groups, depending on the level of complexity of the surface we investigate), it is
easier to deal with the calculations. The presentation is better explained and the shape of the
groups is better understood. This software was constructed based on the knowledge we have
from work [5].
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As for algebraic curves, we can use the first software that we constructed in order to produce
braids and presentations of fundamental groups, and later on to determine these fundamental
groups (manual work or Magma). These computations enable us to get some hints about
potential Zariski pairs, see examples in [6].
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A plane Cremona map is a birational map γ : P2 99K P2 of the complex projective plane P2

in itself. They form the so-called plane Cremona group Cr(P2), also denoted by Bir(P2). In
particular, a plane Cremona map γ can be defined by three homogeneous polynomials, with
no common factor, of the same degree, that is called the degree of γ. The famous Noether-
Castelnuovo Theorem states that Cr(P2) is generated by the (linear) automorphisms of P2

and the elementary quadratic map

σ : P2 99K P2, σ([x : y : z]) = [yz : xz : xy].

Let us say that two plane Cremona maps γ, γ′ are equivalent if there exist two automorphisms
α, β of P2 such that

γ′ = α ◦ γ ◦ β.
It was classically very well known that there are exactly three equivalence classes of quadratic
planar Cremona map.

A description of equivalence classes of cubic planar Cremona maps has been given in 2013
by D. Cerveau and J. Déserti. They found 32 types of equivalence classes, by studying the
plane curves that are contracted by a cubic planar Cremona map. In the paper [1], Nguyen
Thi Ngoc Giao and me found a mistake and some inaccuracies in the work by Cerveau and
Déserti, and we gave a fine and complete classification of equivalence classes of cubic planar
Cremona maps. The main tool of our approach is a new discrete invariant of the base locus of
a plane Cremona map, called weighted proximity graph. Indeed, in the paper [1], we classify
weighted proximity graphs of cubic planar Cremona maps up to isomorphism and, in her
Ph.D. Thesis [2], Nguyen Thi Ngoc Giao classified weighted proximity graphs of quartic
planar Cremona maps up to isomorphism.

In a work in progress, we are preparing scripts that classify weighted proximity graphs of
plane Cremona maps of fixed degree, up to isomorphism, by using several Computer Algebra
tools, like Maple, Magma, CoCoA, Macaulay2, Pari-GP, Matlab.
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A vector bundle E on a polarized variety (X,OX(h)) of dimension n is called supernatural
if for each j ∈ Z there is at most one i such that hi(E(jh)) = 0 and the Hilbert polynomial
of E has n distinct integral roots. These bundles play a key role in the main results of Boij-
Söderberg theory, providing the extremal rays of the cone of cohomology tables[1]. The
existence of supernatural bundles for any given root sequence is open for an arbitrary variety
even if it is known for Pn. For example, what is the situation for Grassmannians?

A m × n-matrix M = (aij) with coefficients aij ∈ Z>0 is a step matrix if the differences
between columns and rows are constant.

In this talk, we will explore the answer of the question for irreducible bundles on Grassman-
nians. We will show that a given set S of (k+ 1) · (n− k) distinct positive numbers is a root
set of an irreducible bundle on the Grassmann variety G(r, k) of k-linear subspaces of Pn

together with the Plücker embedding if and only if one can construct a (k+1)× (n−k) step
matrix using the set S. So, the problem of existence of an irreducible supernatural bundle on
Grassmannians is equivalent to the existence of a step matrix.

Additionally, I will mention about a small python package which turns the possible step
matrices from a given set if it exists. I will be open the comments from the audience how to
improve the efficiency of this code.
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A binomial edge ideal J is an ideal of a polynomial ring generated by some minors of a
generic 2 × n matrix. Therefore, it is possible to associate with J a finite simple graph G
with n vertices whose edges correspond to the minors generating J .

These ideals were introduced independently in [4] and [6] and have been extensively stud-
ied since then. In [4] a combinatorial characterization of the unmixedness of J is given in
terms of some special disconnecting sets of vertices of G called cut sets. However, giving a
description of the algebraic properties of binomial edge ideals in terms of the combinatorics
of the associated graphs is usually a challenging problem.

In [3] a characterization of the Cohen-Macaulayness of J has been conjectured using the cut
sets of G. The conjecture is known to be true for several classes of graphs, such as bipartite,
chordal, and traceable graphs, see [2,3,5,7]. However, the general case is still open.

After an introduction to the topic and to the conjecture above, I will explain how this con-
jecture can be proved by finding a special vertex in all graphs satisfying a certain property.
Looking for this vertex, in [1] we develop an algorithm that allowed us to prove the conjec-
ture for graphs having at most 15 vertices, significantly extending the previous computational
results contained in [5]. Several properties proved to develop the algorithm are important also
from a theoretical point of view and have allowed to prove the conjecture in other cases.

Keywords
Binomial edge ideal, Cohen-Macaulay, accessible graph, cut set
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Given A = {a0, . . . , an−1} a finite set of n ≥ 4 non-negative integers that we will assume to
be in normal form, i.e., such that 0 = a0 < a1 < · · · < an−1 = d and relatively prime, the
s-fold sumset of A is the set sA of integers obtained by collecting all the sums of s elements
in A. On the other hand, given an infinite field k, one can associate to A the projective
monomial curve CA parametrized by A:

CA = {(vd : ua1vd−a1 : · · · : uan−2vd−an−2 : ud) ∈ Pn−1k | (u : v) ∈ P1
k} .

In [2], the author proved that the size of the sumsets of A coincide with the values of the
Hilbert function of k[CA], the coordinate ring of CA, for all s ∈ N, i.e., |sA| = HFA(s) for
all s ∈ N. This follows the philosophy of [1].

Let S1 and S2 denote the numerical semigroups generated by A and d − A, respectively,
where d−A = {d−a : a ∈ A}. Moreover, for i = 1, 2 we denote by ci the conductor of the
numerical semigroup Si, i.e. ci = max (N \ Si) + 1. We consider the set A = {(a, d− a) :
a ∈ A} = {(0, d), (a1, d − a1), . . . , (d, 0)} and the subsemigroup S of N2 generated by A.
It is clear that S = t∞s=0sA and the sumsets of A are determined by the ones of A since

sA = {(α, sd− α) : α ∈ sA},∀s ∈ N , (1)

and hence the semigroup S contains exactly the same information as the sumsets of A. By
[5, Thm. 1.1], [2, Prop. 3.4] and equation (1), if we denote Ci = Si ∩ [0, ci − 2], i = 1, 2,
one has that for all s� 0

sA = {(i, sd− i), i ∈ C1} t {(i, sd− i), i ∈ [c1, sd− c2]} t {(sd− i, i), i ∈ C2} . (2)

More precisely, for s� 0, when we go from sA to (s+1)A, gaps coming from S1 move up
while gaps coming from S2 move to the right, and there are no other gaps in (s + 1)A than
the ones coming from sA, as shown in Figure 1. We define the conductor of S as the least
integer σ such that equation (2) holds for all s ≥ σ.

∗This work was supported in part by the grants PID2019-104844GB-I00 and TED2021-130358B-I00 funded
by MCIN/AEI/10.13039/501100011033 and by the European Union NextGenerationEU/PRTR. The second author
thanks financial support from European Social Fund, Programa Operativo de Castilla y León, and Consejería de
Educación de la Junta de Castilla y León.
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Central
interval

Non-trivial
part of S1

Non-trivial
part of S2

sA (s+ 1)A

Figure 1: Structure of the sumsets of A. For s ≥ σ, we distinguish three disjoint areas: the
central interval and the copies of the non-trivial parts of S1 and S2. Here blue points represent
points in S while red squares represent points outside S.

If k[CA] is the coordinate ring of CA and we denote by r (k[CA]) the regularity of its Hilbert
function, then by [3, Thm. 3.1] the conductor of S can be computed as

σ = max

{
r (k[CA]) ,

⌈
c1 + c2
d

⌉}
.

In order to give a combinatorial formula to calculate the Castelnuovo-Mumford regularity of
k[CA], we define the two following subsets of the semigroup S, the Apery set APS and the
exceptional set ES :

APS = {(x, y) ∈ S : (x− d, y) /∈ S, (x, y − d) /∈ S} ,
ES = {(x, y) ∈ S : (x− d, y) ∈ S, (x, y − d) ∈ S, (x− d, y − d) /∈ S} .

For each s ∈ N, we consider the ‘line’ Ls = {(x, y) ∈ N2 : x + y = sd} and we denote
APs = AP∩Ls and Es = ES ∩ Ls. Figure 2 shows how points in APS and ES look like.
Using these notations, we have the following formula which shows the distribution of the
elements of APS and ES in levels [3, Prop. 2.9]:

|APs | − |Es| = |sA| − 2|(s− 1)A|+ |(s− 2)A|, ∀s ∈ N . (3)

By the criterion of Goto et al. [4, Thm. 2.6], k[CA] is Cohen-Macaulay if, and only if,
ES = ∅. Therefore, another equivalent condition of the Cohen-Macaulayness of k[CA] is
|APS | = d by (3).
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(x, y)

Ls−2 Ls−1

Ls

(x′, y′)

Ls−2 Ls−1

Ls

Figure 2: A point (x, y) in Es and a point (x′, y′) in APs. Here blue points represent points
in S while red squares represent points outside S.

It turns out that APS and ES are both finite sets and we define the following numbers asso-
ciated to S and the monomial curve CA:

m (APS) = max ({s : APs 6= ∅}) ,
m (ES) = max ({s : Es+1 6= ∅}) (and m (ES) = −∞ if ES = ∅) .

These definitions allow us to give a combinatorial formula for the Castelnuovo-Mumford
regularity of k[CA] [3, Thm. 3.6]:

reg (k[CA]) = max{m (APS) ,m (ES)} .

Finally, we can bound the Castelnuovo-Mumford regularity of k[CA] from above and from
below in terms of the conductor of S [3, Thm. 3.15]:

1. If σ = r (k[CA]) ≥ d c1+c2d e, then σ ≤ reg (k[CA]) ≤ σ + 1.

2. If σ = d c1+c2d e > r (k[CA]), then dσ2 e+ 1 ≤ reg (k[CA]) ≤ σ + 1.

Keywords
projective monomial curve, semigroup ring, Castelnuovo-Mumford regularity, sumsets, Apery
set
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Involutive bases are Gröbner bases with additional combinatorial properties and arose from
merging ideas from computer algebra with the Janet–Riquier theory of differential equations
[1]. Any involutive basis induces a combinatorial decomposition of the ideal giving imme-
diately the Hilbert function of the ideal. The involutive theory also leads to an alternative
algorithm for the construction of involutive / Gröbner bases which is competitive to advanced
variants of the Buchberger algorithm. For a comprehensive review of algorithmic and theo-
retical aspects of involutive bases, we refer to [2,3].

Pommaret bases (for the degrevlex term order) are a special instance of involutive bases
which are of particular interest for algebraic geometry. Compared to arbitrary Gröbner bases,
they reflect much better algebraic and geometric properties of the ideal they generate. Many
invariants – some of which are expensive to compute with standard methods – can be directly
read off from a Pommaret basis, for example the Krull dimension (together with a maximal
set of independent variables), the depth/projective dimension (together with a maximal reg-
ular sequence), the Castelnuovo–Mumford regularity (and more generally all extremal Betti
numbers), the satiety (plus the saturation) or a parameter ideal. A Pommaret basis also pro-
vides simple tests whether an ideal is Cohen–Macaulay, Gorenstein or componentwise linear.
On a more theoretical side, Pommaret bases allow for constructive proofs of for example
Hilbert’s syzygy theorem, the existence of Noether normalisations, Hironaka’s criterion for
Cohen–Macaulay rings or the criteria for q-regularity by Bayer–Stillman and Eisenbud–Goto,
respectively. For more details, we refer to [2,4].

Many of these results are a consequence of the fact that a Pommaret basis induces a free
resolution of the ideal it generates. The shape of the resolution can be immediately deduced
from the Pommaret basis. Using tools from discrete Morse theory, one can also efficiently
determine the differentials [5].

From a computational point, Pommaret bases face a problem: they exist only in suitable
coordinates. More precisely, an ideal has a finite Pommaret basis, if and only if its leading
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ideal is quasi-stable (in this case, we say that the ideal is in quasi-stable position) [2,4]. In
fact, many of the above mentioned results are due to this property, as they require a generic
position. One can show that a random linear transformation produces with probability 1
quasi-stable position. However, random transformations destroy all sparsity in the basis and
thus are not useful computationally.

A first deterministic approach to this problem was proposed in [6] (in the context of differ-
ential equations); however, the proof contained gaps. An improved version was presented
in [2,4] and a complete and detailed proof finally given in [7]. The basic idea is to employ
repeatedly very sparse transformations, so-called elementary moves, until a quasi-stable po-
sition is reached. There exist different methods to find suitable elementary moves. One can
for example compare the Janet and the Pommaret multiplicative variables of each generator
(in a Janet basis) or one can determine obstructions to quasi-stability from a minimal basis
of the leading ideal. Typically, several elementary moves are suitable and while each choice
will lead after finitely many steps to a quasi-stable position, the efficiency of the process will
depend on the made choice.

Such situations are quite common in computer algebra: the correctness and the termination
of an algorithm is independent of certain choices made during its execution, but its effi-
ciency strongly depends on these choices. A classical example is the choice of the next
S-polynomial in Buchberger’s algorithm. Classically, one then relies on some – typically
fairly simple – heuristics to make the required choices. Machine learning provides here an
alternative approach without affecting the mathematical correctness of the results. In the case
of Buchberger’s algorithm, the authors of [8] used a 1D convolutional neural network, i. e. a
variant of reinforcement learning, to choose S-polynomials in Gröbner bases computations
for binomial ideals.

A group of authors studied in a series of articles including [9,10] the problem of choosing
a good variable ordering for cylindrical algebraic decomposition. Here, one faces the same
problem: the correctness of the results in independent of the used ordering, but the runtime
of the computations will dependent very strongly on it. The authors formulated the choice
of an ordering as a multi classification problem for which many algorithmic approaches like
support vector machines have been developed in machine learning.

We will report on first results in applying similar ideas to the deterministic construction of
“good” coordinates for Pommaret bases within the deterministic algorithm presented in [7].
This algorithm starts with a Gröbner basis in the current coordinate system. If the leading
ideal is not quasi-stable, then an elementary move related to an obstruction is performed and
a Gröbner basis of the transformed ideal is computed. This process is iterated until a quasi-
stable position is reached. Termination of this algorithm was shown in [7] independent of
how the used elementary moves are chosen. Experiments with various heuristics in prototype
implementations were inconclusive.

We now propose to use machine learning for choosing the next elementary move to be per-
formed. The goal is to predict which move yields the greatest increase of the volume polyno-
mial of the Pommaret span of the current basis. Analogously to [9,10], we consider this as a
multi classification problem (with a class corresponding to a choice of an elementary move)
and compare five approaches to its solution: support vector machines, k-nearest neighbours,
decision trees, multilayer perceptrons and logistic regression.
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A great problem in applying methods from machine learning in the context of commutative
algebra and algebraic geometry is the generation of training data, as there do not exist suf-
ficiently large databases of “typical” ideals that could be used for training purposes. Hence,
the only possibility is to generate random ideals, although it is well-known that these are not
necessarily representative for the type of ideals appearing in applications. We wrote our own
ideal generator where the number of generators in the basis, the number of terms in each
generator and the degree of each generator follow a Poisson distribution. With this generator,
we produced 10.000 ideals in a polynomial ring with four variables.

For the machine learning, each ideal is represented by a feature vector. The largest part
of this vector consists of “statistical” information encoding degrees (total and in individual
variables) or the appearence of the different variables in the generators and their leading
terms. A smaller “transformation” part lists which elementary moves are proposed by the
obstructions to quasi-stability of the leading ideal. In four variables, this leads to about 100
integer entries in the feature vector.

In 4 variables, 6 different elementary moves exist. For preparing the training data, each
ideal was transformed with each elementary move, then a Janet basis was computed of the
transformed ideal and finally the volume polynomial of the Pommaret span of this basis
was determined. A comparison of the results showed which elementary move is optimal.
Hyperparameters of the different methods were as usually determined via cross-validation.

First experiments showed promising results. The accuracy of the different methods varied
between 75% and 90% with support vector machines giving clearly the best and k nearest
neighbours the worst results. In a comparison with random choices, a support vector machine
was better in about 55% of the examples and produced the same results in more than 30% of
the examples. We expect that the ratio will be even more in favour of machine learning, if the
number of variables and hence the number of possible elementary moves increases.

The experiments also lead to some theoretical “surprises”. We expected that only elementary
moves related to obstructions of quasi-stability are useful and originally intended to take into
account only these. However, in our sample of random ideals we found several cases where
an unrelated move was not only useful but in fact even the optimal choice. We still need a
deeper understanding of this observation.

Future works will include studies of ideals in a larger number of variables. An important goal
will be to include also transpositions as allowed transformation and to take the sparsity of
the obtained basis into account. We also want to use a more quantitative way to analyse the
results. This means not just to mark whether the optimal choice was found, but to measure
how much worse the actual choice was.
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Pommaret bases, quasi-stable position, deterministic coordinate transformations, machine
learning, multi classification
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In this talk, we present some results from a recent (2020-2022) selection: achievements and
collections of published articles obtained in [5,9,11]. Finding the number of solutions to
equations over finite fields becomes a crucial and unavoidable task that we often encounter
when we solve problems algebraically in the domain of protection information theory, basi-
cally represented by cryptography and coding theory. More importantly, solving equations
over finite fields is a much more important problem from both theoretical and practical points
of view. Until recently, we could get satisfied with the number of solutions and not with
the complete resolutions of the equations (that is to say, by explicitly finding the set of so-
lutions). This contentment with these shreds of information on the equations that come to
us from the problems of the algebraic theory of linear codes or the theory of cryptographic
functions in symmetric cryptography becomes more and more unsatisfactory. It becomes im-
portant +2022 to seek to develop tools and implement methods to resolve as many equations
over finite fields as possible and make them available to theorists, cryptographers and coding
theory.

We discuss solving algebraic equations over finite fields. Precisely we shall focus on one
equation and, namely, be interested in the problem of solving the equation Pa(X) = 0 ex-
plicitly over the finite field FQ, where Pa(X) := Xq+1 +X + a, Q = pn, q = pk, a ∈ F∗

Q

and p is a prime. This problem arises in many contexts, including correcting codes and cryp-
tographic functions. The resolution of Pa(X) = 0 was a long research open problem for
over half of a century. The research on this specific problem has a long history of more than
a half-century from the year 1967 when Berlekamp, Rumsey and Solomon first considered a
very particular case with k = 1 and p = 2. After that, many efforts were made by several
researchers (such as Helleseth and Kholosha in 2008 and 2010 ([6, 7]), Bracken, Tan and
Tan in 2014 ([3,4])) toward identifying all the FQ-zeros of Pa(X) specifically for a particular
problem instance over binary fields, i.e. p = 2. Let Na denote the number of zeros in FQ of
the polynomial Pa(X) and Mi denote the number of a ∈ F∗

Q such that Pa(X) has exactly i
zeros in FQ. In 2004, Bluher [1] proved that Na equals 0, 1, 2 or pd+1 where d = gcd(k, n)
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and computed Mi for every i. She also stated some criteria for the number of the FQ-zeros
of Pa(X).

The number of roots of any projective polynomial was determined implicitly in [8] and ex-
plicitly in [14] from its coefficients. In particular, new criteria for which Pa(X) has 0, 1,
2 or pd + 1 roots were proved in [14] for any characteristic. After that, many efforts were
made by several researchers (namely, Helleseth and Kholosha in 2008 and 2010 and next,
Bracken, Tan and Tan in 2014) toward identifying all the FQ-zeros of Pa(X) specifically for
a particular problem instance over binary fields, i.e. p = 2.

In this talk, we shall restrict ourselves to the even characteristic. In the first part of this talk, we
will see that the resolution of Pa(X) := X2k+1+X+a = 0 was like a puzzle where almost
all the ingredients have been introduced in the literature, and almost all had to be put together
using new ideas and appropriate algebraic techniques. Specifically, we first show how we
have very recently, [10] completely solved the equation Pa(X) := X2k+1 + X + a =
0 over F2n when d = 1. We will show, in particular, using a new Identity of Dickson
polynomials given by Bluher [2], that the problem of finding zeros in F2n of Pa(X) can be
divided into two problems with odd k: to find the unique preimage of an element in F2n under
a Müller-Cohen-Matthews polynomial and to find preimages of an element in F2n under a
Dickson polynomial. By completely solving these two independent problems, they explicitly
calculated all possible zeros in F2n of Pa(X), with new criteria for which Na is equal to 0, 1
or 3 as a by-product. We highlight some of the latest important achievements listed above that
could not be found without the precious advances made by Bluher [1,2]. Also, the resolution
of the equation Pa(X) = 0 was made later in two papers in any characteristic p without any
restriction on p and gcd(n, k). Thus now the equation Xpk+1 + X + a = 0 over Fpn is
completely solved for any prime p, any integers n and k.

In the second part of this talk, we shall present two applications where our was crucial. The
first one is to provide in [5] a direct proof of the APN-ness of the Kasami functions. And the
second one was to provide ([11]) a complete characterisation of quadrinomials permutations
on the finite field F4m of shape fε(X) := ε1X

q+1
+ ε2X

q
X + ε3XX

q + ε4X
q+1, defini-

tively (where q = 2k, Q = 2m, m is odd, gcd(m, k) = 1, X = XQ). As a direct application,
we derive a complete proof of the conjecture proposed in [13] and confirm its validity by
presenting a complete proof of the bijectivity of fε over FQ without any restriction. Solving
this conjecture gives rise to a family of promising candidates with excellent cryptographic
properties as S-boxes in designing block ciphers in symmetric cryptography, namely, per-
mutations having boomerang uniformity 4 and the best-known nonlinearity. The considered
conjecture proved in [11] has attracted much attention in recent years (2019-2021). As seen
in the very recent literature, more than 7 papers published in IEEE-IT and DCC journals ap-
peared proposing exciting approaches to solve this conjecture. Still, unfortunately, despite
these efforts, the conjecture remains unsolved on its whole. However, it is the first time we
have offered an approach that solves the enter conjecture by simultaneously handling both
sides involving equivalence. Very recently [12], we presented a complete proof of the bijec-
tivity of fε over FQ2 without any restriction. This is joint work with Kwang Ho Kim and
some of his team members cited in the references.
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A monomial curve in the projective plane P2
K is an algebraic curve parameterized by a map

p : P1
K −→ P2

K, (T0 : T1) 7→ (T d
0 : Tu

0 T
u−d
1 : T d

1 ), where d ∈ Z>1 is the degree of the
curve and u is coprime to d. To the parameterization p, we associate the monomial ideal I =
〈T d

0 , T
u
0 T

u−d
1 , T d

1 〉. The Rees algebra associated to I isRI = ⊕m≥0I
m · zm ⊂ K[T0, T1, z],

where z is a new variable. The Rees ideal is the kernel of the ring homomorphism φ :
K [T0, T1, X0, X1, X2]→ K [T0, T1, z], defined by:

X0 7→ T d
0 z,

X1 7→ Tu
0 T

d−u
1 z,

X2 7→ T d
1 z.

Similarly, one can define monomial curves in projective spaces of higher dimensions. The
structure of the Rees algebra and its minimal free resolution is best known for plane curves.
Indeed, [3] shows how to compute the minimal bigraded resolution of the Rees Algebra
associated to a monomial plane curve. In that work, slow Euclidean remainder sequences
derived from the degrees d and u appearing in the generators of I are used to decribe the
module homomorphisms in the free resolution. Moreover, by [5] it is known that there exists
an approach to derive the resolution via geometric means, because the ideal I can be viewed
as a codimension 2 lattice ideal.

In our work, we derive the minimal generators of the Rees ideal and the minimal free resolu-
tion via a new approach that combines algorithmic and geometric ideas. In order to obtain the
minimal generators, we exploit the structure of the cyclic subgroup generated by [u] ∈ Z/dZ.
From the minimal binomial generating set, using a degree reverse lexicographic term order-
ing < with T0 < T1 < X0 < X2 < X1, we obtain a Gröbner basis of the Rees ideal by
adding only the trivial relation T d

0X2−T d
1X0. To this Gröbner basis, we associate a directed

graph with the Gröbner basis elements as nodes and suitable edge labels derived from the
generators connected by the edges. We show that a complete free resolution can be read off
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from this graph and that the minimal free resolution is obtained just by deleting certain nodes
from the graph.

We conclude with some remarks on whether we can expect our methods to apply also to Rees
ideals of monomial curves in Pm

K with m ≥ 3. Such monomial curves have been studied for
a long time (see e.g. [1], [2]); however, the analysis of the structure of their Rees algebras
remains a difficult problem. We expect that our approach will be useful for determining
coarser invariants like for example the projective dimension without much computational
effort. However, the description of the whole resolution for such curves remains as a topic
for future work.
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Marked bases on a quasi-stable ideal are polynomial bases for ideals in the polynomial ring
R = K[x0, . . . , xn], K a field, that share some good properties of Groebner bases. Marked
bases are term order free, but the role of the initial ideal is played by the quasi-stable ideal
we consider, and its combinatorial properties somehow replace the term order.

Marked bases over a quasi-stable ideal were used to study Hilbert and Quot schemes (see for
instance [1]), which are “mysterious”objects in algebraic geometry. Due to this application,
it is quite natural to consider ideals in R/I , for I homogeneous ideal, and look for reasonable
polynomial bases for them in order to deal with the Hilbert scheme on Proj(R/I).

We can do this in two different ways. The first one works in quotient rings R/I , where I
is a homogeneous ideal, and exploits the good behaviour of quasi-stable ideals with respect
to saturations. However, it requires the computation of the equations defining a complete
marked scheme, and then adding some more constraints.

The second one is inspired by a recent paper [3]. We generalize the notion of marked basis
over a quasi-stable ideal to quotient rings R/I , with I a quasi-stable ideal, by defining relative
marked basis w.r.t. I . We obtain algorithms to verify that a given marked set is a relative
marked basis w.r.t. I and to compute the affine scheme parameterizing relative marked bases
w.r.t. I . These algorithms are more effective than the techinique developed in the first case,
because we need to use a smaller number of parameters in the computations.

This second approach allowed some applications to the Hilbert scheme on Proj(R/I), with
some further hypotheses on I: if I is Cohen-Macaulay, it allows to obtain an open cover of the
Hilbert scheme; if I is Macaulay-Lex, it allows to study the smoothness of the lexicographical
point. Both applications are discussed in a talk by Francesca Cioffi (part II).

This talk is based on a recent work available at [2].
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Let R = K[x0, . . . , xn] be the polynomial ring over a field K in n + 1 variables and X be
the projective closed scheme defined in Pn

K by the quotient ring R/I over a homogeneous
ideal I of R. Exploiting the theory of marked bases, some new computational tools have
recently been developed to analyse the Hilbert scheme over X , when I is a quasi-stable ideal.
The description of this development will be given in a talk by Cristina Bertone (part I). The
present talk will focus on two applications of these tools, under some further hypotheses on
the ideal I .

Both the applications take benefits from the fact that the use of marked bases allows the
construction of some open subschemes in the Hilbert scheme over X .

When the field K is infinite and the quotient ring on the quasi-stable ideal I is Cohen-
Macaulay, we develop this feature to describe an open cover of Hilbert schemes over such a
quotient ring. This first application is achieved thanks to suitable changes of variables applied
on open subsets parametrising relative marked bases. We generalize the method which is de-
scribed in [1] and which is based on deterministically computable suitable linear changes of
variables (see [4]). The novelty of this approach consists in the fact that we show that there
are computable linear changes of variables of the quotient ring which by definition preserve
the complete structure of the ideal I , instead of destroying it.

The second application gives examples of both smooth and singular lex-points in Macaulay-
Lex quotient rings, even when K is not infinite or the quotient ring is not Cohen-Macaulay.
Indeed, every non-empty Hilbert scheme over a Macaulay-Lex ring on a quasi-stable ideal
has the lex-point. Differently from the case of a Hilbert scheme over a polynomial ring on
a field (see [6]), in this case the lex-point can be singular. Also in this case the availability
of the open subschemes described by means of the relative marked bases has a crucial role.
The benefits obtained by the use of relative marked bases are appreciable even when we
count the number of parameters involved in the computations, as we highlight throughout the
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descriptions of some of our examples. Computational evidences encourage to think that the
lex-point is in particular singular in Clements-Lindström rings (see [3] for this kind of ring).
The problem of the smoothness of the lex-point is also studied in other Hilbert schemes, see
for instance [5].

This talk is based on a recent work available at [2].

Keywords
Marked basis, Hilbert scheme, Cohen-Macaulay ring, Macaulay-Lex ring, open cover, lex-
point
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Let Fq be a finite field of q elements. A code C over Fq of length n is a vector space C ⊂ Fn
q .

Evaluation codes are codes obtained by evaluating a certain set of polynomials in a given set
of points, usually in the affine space Am. These codes have been used successfully for many
applications [1,2] because of their rich algebraic structure, which allows to study their pa-
rameters, self-orthogonality properties, etc. Obtaining long codes with good parameters over
a fixed finite field in general is a difficult problem. One idea to obtain longer codes over the
same finite field while maintaining the algebraic structure of evaluation codes is to evaluate
in points of the projective space Pm [6,9]. In particular, the family of projective Reed-Muller
type codes CX(d), which is obtained by evaluating the set of homogeneous polynomials of
degree d in a set X ⊂ Pm, provides a nice connection between coding theory and commu-
tative algebra [7,8]. In fact, it is possible to derive the basic parameters of the code CX(d)
from invariants of the vanishing ideal of X, denoted by I(X). Moreover, it is also possible
to describe the generalized Hamming weights of the code using the generalized minimum
distance function of the vanishing ideal, and using the generalized footprint function, which
is easier to compute, one can also obtain a lower bound for the generalized Hamming weights
[5].

Therefore, we see that the vanishing ideal I(X) plays a crucial role in studying this family of
codes. The set of points X is usually given as the projective variety defined by a homogeneous
ideal I , and one may wonder how to compute I(X) from I . This computation is usually done
by adding the equations of the projective space I(Pm) to I and computing the radical. We
give an alternative and more efficient way of computing the vanishing ideal I(X) by using
the saturation with respect to the homogeneous maximal ideal [3].

Another approach to study these codes, which can be more fruitful for some applications,
is to fix the representatives of the points of X. For instance, we can choose the set formed
by the representatives of the points of X which have the first nonzero coordinate equal to 1,
which we denote by X . We can regard X as a subset of Am+1, and we can simply consider
the evaluation of the polynomials in Sd at the set X . This approach connects the code CX(d)
with the vanishing ideal I(X) with similar relations to the ones we had between CX(d) and
I(X) before. In this case, given a homogeneous ideal I and the variety that it defines over
the projective space X, it is not difficult to obtain the ideal I(X). In fact, we are able to
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obtain a universal Gröbner basis for I(X) for some sets X , and we give a way to reduce any
monomial with respect to this basis. These tools can be used in order to provide bases for
the subfield subcodes of projective Reed-Solomon codes and projective Reed-Muller codes,
which in turn can be used to obtain classical and quantum codes with good parameters [4].

Keywords
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Letterplace Gröbner bases were introduced by La Scala and Levandovskyy in [1] as an al-
ternative way for computing Gröbner bases of two-sided ideals in a free associative algebra
over a field. Later it turned out that it is possible to reformulate the procedure in the form
of Buchberger’s style. Nevertheless, the letterplace approach led to the creation of SINGU-
LAR:LETTERPLACE [2], a subsystem of SINGULAR, providing very rich functionality and
flexibility for a practitioner in the realm of computations with associative algebras. Moreover,
the letterplace way of thinking naturally addresses nonlinear difference equations, which still
wait for a serious algorithmic treatment.
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Free associative algebra, Non-commutative Gröbner basis, Non-commutative computer alge-
bra
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An artinian monomial complete intersection (xd1
1 , . . . , xdn

n ) enjoys the following two well
known properties: the set of monomials which are not divisible by xdi

i for i = 1, . . . , n is
a vector space basis for the corresponding quotient, and the Macaulay dual generator equals
Xd1−1

1 · · ·Xdn−1
n up to a constant factor.

In this paper we argue that these characteristics should be seen as special cases of properties
of complete intersections on the form

I = (a1x
d1
1 − b1m1, . . . , anx

dn
n − bnmn),

where ai 6= 0, and mi is a monomial of degree di. Our main results are the following.

1. Associated to I there is a graph G that gives a rewriting rule transforming any element
in the polynomial ring to a linear combination of monomials not divisible by xdi

i for i =
1, . . . , n modulo I . In particular, the monomials not divisible by the xdi

i ’s constitute a
vector space basis for the quotient ring.

2. The coefficients of the Macaulay dual generator are monomials in the coefficients of
the generators of I , and can be described algorithmically in terms of the graph G.

3. The results above require that I is a complete intersection. The radical of the resul-
tant of I , which is a polynomial in the ai’s and bi’s, determines for which choices of
coefficients I really is a complete intersection. We determine this polynomial com-
binatorially in terms of G with the restriction that each mi is not a pure power of a
variable. We also give a less precise description of the radical of the resultant for our
general class of ideals.

The first and the third result generalize a construction for the case d1 = · · · = dn = 2 by
Harima, Wachi, and Watanabe [1], and this paper has served as the main source of inspiration
for our study.
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A graded k-algebra A is said to be a Koszul algebra if the minimal free resolution of the field k
over A is linear. Linear in this setting means that all the maps in the resolution are represented
by matrices with all nonzero entries being homogeneous of degree one. Koszul algebras were
introduced by Priddy in 1970, and it turned out that this homological definition pinpoints a
common property of several algebras arising naturally in different fields of mathematics, such
as commutative algebra, algebraic geometry, representation theory, topology, and number
theory.

We consider algebras presented as a quotient A = R/I where R is a polynomial ring and I a
homogeneous ideal. The algebra A is said to be quadratic if there is a presentation where the
defining ideal I is generated in degree two. Moreover, A is G-quadratic if I has a Gröbner
basis of polynomials of degree two. A first observation regarding Koszul algebras is that they
are quadratic, and it was proved in [1] that G-quadratic algebras are Koszul. The converses
does not hold in general. Aside from using Gröbner bases, one can search for a Koszul
filtration in order to prove that an algebra is Koszul. This approach was recently applied in
[6] to prove that Chow rings of matroids are Koszul.

One class of G-quadratic algebras are the Veronese subalgebras. The d-th Veronese subalge-
bra of a polynomial ring R is the subring generated by all the monomials of degree d in R.
In the 1990s Peeva and Sturmfels raised the question whether the so called pinched Veronese
subalgebra

k[x3, x2y, x2z, xy2, xz2, y3, y2z, z2y, z3] not containing xyz (1)

is Koszul. This concrete question turned out difficult to answer, but the problem was eventu-
ally solved by Caviglia in 2009, [2]. Caviglia’s proof uses a Gröbner deformation technique,
and computer assisted steps. An alternative proof of more theoretical nature was later pro-
vided in [3]. Even though Gröbner basis techniques are present in Caviglias proof, it does not
conclude that the algebra is G-quadratic. In fact is has been verified, see [5], that there is no
quadratic Gröbner basis in the toric coordinates. It is not known whether there exists a linear
change of coordinates under which the pinched Veronese becomes G-quadratic.

Let PV(n, d, s) be the pinched Veronese subalgebra of K[x1, . . . , xn] generated by all mono-
mials of degree d supported in at most s variables. With this notation the example (1) is the
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algebra PV(3, 3, 2). In [5] it is asked for which parameters n, d, s the algebra PV(n, d, s) is
quadratic or Koszul. We address this question in [4].

Theorem ( [4] ). The pinched Veronese algebra PV(n, d, s) is quadratic if s ≥ d(n+1)/2e.

As PV(n, d, s) is generated by monomials it can be presented as the quotient of a polyno-
mial ring and a binomial ideal. A key observation for the proof of the above theorem is that
monomials of degree d generating PV(n, d, s) span a 2-normal vector space, meaning that
PV(n, d, s) contains all monomials of degree 2d. Any algebra generated by monomials span-
ning a 2-normal space can be presented as the quotient by an ideal generated by binomials of
degree at most three. Hence, proving that the algebras are quadratic boils down to showing
that no relations of degree three are needed. When 1 < s < d(n+1)/2e the pinched Veronese
algebras PV(n, d, s) are in general not quadratic. The following problem remains open.

Are the pinched Veronese algebras PV(n, d, s) with s 6= 1 quadratic if and only if
s ≥ d(n+1)/2e, with say a few exceptions for small values of n, d, s? Are they also
Koszul in this case?
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Let K be an arbitrary field and A be a unital subalgebra in K[x]. We call A almost mono-
mial if it contains all monomials of sufficiently large degree. Using the terminology from
[1] almost monomial subalgebras are exactly those with Sp(A) = {0}. Furthermore we
know from that paper that such subalgebras have the property that only the value of f and
finitely many its derivatives in zero determine if f ∈ A. From that paper we also know that
determining so called 0-derivations is vital in order to describe possible subalgebras of A.

In this paper we prove a conjecture about the possible structure of 0−derivations formulated
in [1]. We show also that for any two such subalgebras A ⊃ B we can create a chain
A1 = A ⊃ A2 · · · ⊃ An = B such that Ai+1 has codimension one in Ai and can be obtained
as a kernel of some 0−derivation of Ai. This shows that the result in [2] for these type of
algebras hold for any field.

One of our main tools for studying an almost monomial algebra will be a certain associated
semigroup: If f(x) =

∑
aix

i is a non-zero polynomial in K[x] we define its lower degree
as

ldeg(f) = min{k|ak 6= 0}.

The set of all possible lower degrees

S
(L)
A = {ldeg(f)|f ∈ A}

forms a semigroup, that we call the lower semigroup of A.

We show that the multiplicity m(A) and the Frobenius number F (A) of this semigroup are
important invariants of A.

We also introduce the notion of LAGBI basis which is similar to a SAGBI basis, but based
on ldeg of polynomials instead of ordinary degree. We describe an efficient algorithm to
construct such a basis and show how to use it in order to understand the structure of A and its
0−derivations.
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A comprehensive Gröbner system (CGS) introduced in [14] is a powerful tool for handling a
parametric ideal. Since the paper was published, several relevant researches such as [4-13,15]
have been done. A first efficient algorithm is introduced in [13] based on the work of [2]. It
is further improved by [3-5,9-10]. By those algorithms, we can now have practical imple-
mentations of several algorithms of computer algebra which use CGS computation such as
the quantifier elimination algorithm introduced in [1].

A CGS is defined as follows, where Ā = A1, . . . , Am are parameters and X̄ = X1, . . . , Xn

are main variables.

Definition 1.
Let F be a finite subset of Q[Ā, X̄] and > a term order on the set of terms of X̄ . A comprehen-
sive Gröbner system of F w.r.t. > is a finite set G = {((E1, D1), G1), . . . , ((Es, Ds), Gs)}
with finite subsets Ei, Di of Q[Ā] and a finite subset Gi of Q[Ā, X̄] for each i such that
{V(Ei) − V(Di)|i = 1, . . . , s} is a partition of Cm and Gi(ā) becomes a Gröbner basis of
the ideal 〈F (ā)〉 in C[X̄] w.r.t. > for any ā ∈ Cm which lies in V(Ei) − V(Di). (Gi(ā)
and F (ā) denote the sets of polynomials in C[X̄] obtained from Gi and F by specializing the
parameters Ā with ā.)

In order to apply CGS computation to any algorithm, a simple representation of a CGS is
indispensable for its efficient implementation. The algorithms introduced in [3-5,9-10,13]
take some simplification devices into account. For example, we can have Ei, Di such that
the ideals Ii = 〈Ei〉 and Ji = 〈Di〉 are radical ideals satisfying Ii = Ii : J∞

i that is V(Ii) is
the Zariski closure of V(Ii) − V(Ji). Such a pair (Ei, Di) has no redundancy, hence it can
be considered as the simplest representation of the locally closed set V(Ii)− V(Ji) in some
sense.

For the simplification of Gi, however, non of them uses informations we can obtain from
Di.
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Example. Let F = {(B2−1)X +AB,A2 +B2−1} be a set of polynomials in Q[A,B,X].
Considering A,B as the parameters and X as the main variable, the CGS of F produced by
either of the algorithms of [3-5,9-10,13] contains

(({A2 + B2 − 1}, {B2 − 1}), {(B2 − 1)X + AB}).

When A2 + B2 − 1 = 0, (B2 − 1)X + AB = −A2X + AB = −A(AX − B). If
B2 − 1 6= 0 in addition, A2 = −(B2 − 1) 6= 0, hence A 6= 0. Therefore, we can change it to

(({A2 + B2 − 1}, {B2 − 1}), {AX −B})

by replacing the polynomial (B2 − 1)X + AB with a simpler polynomial AX −B.
Important thing is that the polynomial is actually contained in a saturation ideal, that is

AX −B ∈ 〈(B2 − 1)X + AB,A2 + B2 − 1〉 : 〈B2 − 1〉∞.

In [11], we reported that the above relation generally holds. More precisely, we introduced
the following relation �I,J and showed the following theorem holds.

Definition 2.
Let I, J are radical ideals of Q[Ā] such that I ) J and I = I : J∞. Let f(Ā, X̄), p(Ā, X̄)
be polynomials in Q[Ā, X̄]. If there exists a polynomial h(Ā) ∈ Q[Ā] such that

∀ā ∈ V(I)− V(J) h(ā) 6= 0 and f(ā, X̄) = h(ā)p(ā, X̄),

we write f �I,J p. f �I,J p denotes that f �I,J p holds but p �I,J f does not.

If there does not exists g such that p �I,J g, p is said to be irreducible w.r.t. �I,J . An
irreducible polynomial p satisfying f �I,J p is called an irreducible form of f .

In the above example, AX −B is an irreducible form of (B2 − 1)X + AB.

Theorem.
Let f, p be polynomials in K[Ā, X̄] such that f �I,J p, then p ∈ (〈f〉+ I) : J∞.

By this theorem, for any element f ∈ G of ((E,D), G) ∈ G, any irreducible form p of
f w.r.t. �〈E〉,〈D〉 is guaranteed to belong the saturation ideal (〈f〉+ 〈E〉) : 〈D〉∞. Unfortu-
nately, however, we had not obtained an algorithm to compute it at that time.

In this talk, we study the relation �I,J in more detail, and introduce new results concern-
ing an algorithm to compute an irreducible form of a given polynomial.

Our results are embedded in our prototype implementation on the computer algebra system
SageMath [16]. Some computation data is also introduced in the talk for showing effective-
ness of our results.
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In computer algebra, two kinds of polynomial representations are used mostly. One is the re-
cursive representation used by the resultants [4], and another is the monomial representation
used by the Gröbner bases [2]. Given polynomials G and H represented as sums of monomi-
als, the Spol(G,H) is defined to cancel the leading-monomials of G and H by multiplying
as low-order monomials as possible to them. Similarly, treatingG andH as polynomials rep-
resented recursively w.r.t. their variables, we define Elim(G,H) to cancel the leading-terms
of G and H by multiplying as low-order terms as possible to them. Both the Spol(G,H) and
the Elim(G,H) are “critical-pair”s of Knuth-Bendix [6, 3].

Let G and H be in K[x,u], where u = (u1, . . . , un), with x � ui for any i, and let d =
degx(G) ≥ degx(H) = e. By lcf(F ) for F ∈ K[x,u], we denote the leading-coefficient of
F w.r.t. the main variable x. Then, the Elim(G,H) is expressed as follows.

Elim(G,H) = [lcf(H)/c]G− xd−e[lcf(G)/c]H, where c = gcd(lcf(G), lcf(H)). (1)

The Elim operation was proposed in [7], but not investigated until recently. So, we survey
it briefly. The G and H in Elim(G,H) are called operand and eliminator, respectively.
Assuming that G and H are relatively prime, we can eliminate x by computing a “Term
Elimination Sequence”, TES in short, as (P1 :=G, P2 :=H, P3 :=Elim(P1, P2), . . . , Pk :=
Elim(Pk−2, Pk−1)), where 0 6= Pk ∈ K[u]. Note that degx(Pi−1) ≥ degx(Pi) for ∀i > 1.
If degx(Pi−1) = degx(Pi) then the TES may branch there, because we may choose Pi as the
operand, hence we must compare both branches. If Pi is used as the eliminator twice or more,
then we say that the TES becomes abnormal at the i-th element. For computing the abnormal
TES, see [1] or [9]. For each element Pi, we can compute Ai, Bi ∈ K[x,u] satisfying
AiG+BiH = Pi and degree conditions degx(Ak) < degx(H) and degx(Bk) < degx(G).
Thus, TES is similar to the PRS.

The Gröbner basis is one of the most important concepts in modern computer algebra. Only
one fault of it is that its computation is often quite heavy. Recently, the present speaker and
his collaborators tried to improve this situation by using the TES, see a survey paper [1].
Using the recursive polynomial representation, we can eliminate x efficiently. However, this
approach encounters a serious problem: the multivariate resultants obtained by this method
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contain pretty large extraneous factors mostly, and researchers could not remove the extrane-
ous factors until recently, see [5]. In this talk, the speaker presents a new method of removing
the extraneous factors contained in R := resultant(G,H) for obtaining the lowest-order
element Ŝ2 of the elimination ideal 〈{G,H}〉 ∩K[u], by using the TES of G and H .

We consider how Buchberger’s method computes Ŝ2. Employing the lexicographic mono-
mial order, the method can obtain an R ∈ K[u]. Let Γ2 = {E1, E2, . . . , El} be an inter-
mediate basis when the R has just been computed. Then, Buchberger’s method constructs
Spol(R,Ei) for each Ei of Γ2, updating R and Γ2. Repeating this, we find Ŝ2 eventually.
We perform similar operations for the elements of TES(G,H), by selecting an “optimal”
TES, as follows. At each branching point of TES, we first select one branch so that the last
element Pk is of the lowest order. Next, if deg(Pi−1) = deg(Pi) then we discard Pi−1.
Finally, for each element Pk−i (1 ≤ i ≤ k−1) of the optimal TES, we eliminate x by Pk

with the Elim operation, and we name the resulting polynomial in K[u] as Pk+i.

First, we compute Pk+1. Assuming degx(Pk−1) = 1, we express Pk−1 as C1,1(u)x +

C1,0(u), whereC1,1 6= 0. Putting θ1,1 := gcd(C1,1, Pk), we get Pk+1
def
= Elim(Pk−1, Pk)=

[Pk/θ1,1]Pk−1−[C1,1/θ1,1]xPk=[Pk/θ1,1](C1,1 x+C1,0)−[C1,1/θ1,1]xPk=[Pk/θ1,1]C1,0.
Next, let us compute Pk+2, by expressing Pk−2 as C2,2(u)x

2 + C2,1(u)x + C2,0(u),

where C2,2 6= 0. Putting θ2,2 := gcd(C2,2, Pk), we compute P ′k+2
def
= Elim(Pk−2, Pk) =

[Pk/θ2,2](C2,1 x + C2,0). Since P ′k+2 contains x, we apply Elim operation further. Putting

θ2,1 := gcd(C2,1, Pk), we eliminate x1-term of P ′k+2, obtaining Pk+2
def
=Elim(P ′k+2, Pk) =

[Pk/θ2,2]×
(
[Pk/θ2,1](C2,1 x+C2,0)− [C2,1/θ2,1]xPk

)
= [Pk/θ2,2][Pk/θ2,1]C2,0.

We can generalize the above results easily, as follows. Let Pk−i = Ci,i(u)x
i+Ci,i−1(u)x

i−1

+ · · ·+ Ci,0(u)x
0, where Ci,0 6= 0, then Pk+i is expressed as follows.

Pk+i = [Pk/θi,i] · · · [Pk/θi,1]Ci,0, where θi,j = gcd(Ci,j , Pk) (i ≥ j ≥ 1). (2)

Now, we impose a question: what is θ1,1, for example. Is it necessary?, i.e., it contains a
part of Ŝ2, or is it extraneous?, or both?. We cannot check the first case, because we do
not know Ŝ2; the possibility of this case is small because Ŝ2 is small. Hence, we consider
only the case that the θ1,1 is extraneous. Similarly, we assume that, for any i ≥ 2, each
θi,j , (i ≥ ∀j ≥ 1), are extraneous. Then, the amount of the extran. factors of Pk computed
by Pk−i are bounded by lcm(θi,i, . . . , θi,1). Here, the Least-Common-Multiple operation
is applied to avoid multiple counting of the same factors. The extraneous factors will be
over-estimated, so we must check over-removal of extran. factors when Pk is updated.

We expect that removing extraneous factors of Pk by repeating the above method, we will be
able to compute Ŝ2; however, we have not proved it yet.

As for computing Ŝ2, the speaker and Inaba [8] presented a very efficient method: compute
Ak, Bk ∈ K[x,u] satisfying AkG+ BkH = Pk with the degree conditions by the extended
Euclidean algorithm, then Ŝ2 = Pk/C where C := gcd(contx(Ak), contx(Bk)). The proof
in [8] is very complicated, but the speaker found a very simple proof recently; see [1, 9].
Compared with the method in [8], the method in this talk may be more expensive, but the
method shows clearly how the extraneous factors are removed.

The speaker is now working to apply the TES to three-or-more polynomial systems.
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Let f : Cn −→ C be a polynomial map. In [1], S. A. Broughton considered the following
problem:

How can we build up the topology of f−1(a), a ∈ C, from a knowledge of the local Milnor
fibrations around critical points of f?

He introduced the following notion.

Definition A polynomial f : Cn −→ C is called tame if the following holds:

There is a δ > 0 such that the set {x ∈ Cn | | ∂f∂x1
(x)|2 + | ∂f∂x2

(x)|2 + · · ·+ | ∂f∂xn
(x)|2 ≥ δ}

is compact.

Assume that f is a polynomial with only isolated critical points.

Let x0 ∈ Cn be a critical point of f . Let OCn,x0 be the stalk at x0 of the sheaf OCn of
holomorphic functions. Let Jx0 denote the Jacobi ideal ( ∂f

∂x1
, ∂f
∂x2

, . . . , ∂f
∂xn

)x0 in the local
ring OCn,x0

and let µx0
denote the Milnor number at x0 of f defined to be the colength

dimC(OCn,x0
/Jx0

) of the ideal Jx0
.

The total Milnor number µ of f is defined to be the sum of all µx0 , x0 ∈ Cn. For a ∈ C, let
µa denote the sum of all the local Milnor number on f−1(a).

One of the main results of S. A. Broughton presented in [1] is the following.

Theorem Let f be a polynomial with only isolated critical points. Assume that f is tame.
Then, the hypersurface f−1(a), a ∈ C has the homotopy type of a bouquet of µ−µa spheres
of dimension n− 1.

Recall that the topology of f−1(a) can not be, in general, determined by the set of critical
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values of f .

The tameness of a polynomial is a fundamental concept in the study of topology of polyno-
mial map. Note also that the concept of tameness was generalized by several authors and has
been applied, for instance, by A. Douai [4], C. Sabbah [8] and M. Schulze [9] in their study
of Gauss-Manin connections.

We consider in this note a method for testing tameness of a polynomial map. We give, based
on results of S. A. Broughton published in [2], an effective algorithm for testing tameness of
polynomial maps. Main ingredient of our approach is the theory of comprehensive Gröbner
systems [5, 6, 7]. Furthermore, we show that our method can be extended to handle paramet-
ric cases [3]. As an application, we give an algorithm for computing the homotopy type of
the hypersurfaces f−1(a), a ∈ C of a tame polynomial.
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In this talk, we introduce how to compute a primary decomposition of an ideal via algebraic
local cohomology classes. In particular, the method has a good feature that the main part of
the method consists of linear algebra techniques.
Let K be a subfield of the field C of complex numbers and x the abbreviation of n variables
x1, . . . , xn. Let Hn

[O](K[x]) denote the set of algebraic local cohomology classes supported
at the origin O with coefficients in K, defined by
Hn

[O](K[x]) := limk→∞ ExtnK[x](K[x]/〈x1, . . . , xn〉k,K[x])

where 〈x1, . . . , xn〉 is the maximal ideal generated by x1, . . . , xn.

We represent an algebraic local cohomology class by a finite sum of the form
∑
cλ

[
1
xλ

]
where cλ ∈ K, λ ∈ Zn≥1 and [ ] is the Grothendieck symbol. The multiplication by xβ is
defined as

xβ ∗
[

1
xλ

]
=


[

1
xλ−β

]
λi > βi, i = 1, 2, . . . , n,

0 otherwise,

where β = (β1, . . . , βn) ∈ Zn≥0, λ = (λ1, . . . , λn) ∈ Zn≥1.
Fix a term ordering � on Zn≥1. For a given algebraic local cohomology class of the form

ψ = cλ

[
1
xλ

]
+
∑
λ�β cβ

[
1
xβ

]
(cλ, cβ ∈ K), we call

[
1
xλ

]
the head term, cλ the head

coefficient, λ the head exponent,
[

1
xβ

]
the lower terms and β the lower exponents. We de-

note the head term by ht(ψ), the head coefficient by hc(ψ) and the head exponent by hex(ψ).
Furthermore, we denote the set of terms of ψ as Term(ψ), the set of lower terms of ψ as

LL(ψ) =

{[
1
xκ

]
∈ Term(ψ)

∣∣∣∣ [ 1
xκ

]
6= ht(ψ)

}
and the set of exponents of Term(ψ) as

Expo(Term(ψ)) =

{
λ ∈ Zn≥1

∣∣∣∣ [ 1
xλ

]
∈ Term(ψ)

}
. For a finite subset Ψ ⊂ Hn

[O](K[x]),

ht(Ψ) = {ht(ψ)|ψ ∈ Ψ} and LL(Ψ) =
⋃
ψ∈Ψ

LL(ψ). Let λ ∈ Zn≥1 and Φ ⊂ Zn≥1. For each
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1 ≤ i ≤ n, we call λ+ei a neighbor of λ where ei is the ith unit vector. We define the
neighbors of Φ as Neighbor(Φ), i.e. Neighbor(Φ) = {γ+ei|γ ∈ Φ, i = 1, . . . , n}. Set Λ =
Neighbor(Φ)\Φ and Cor(Φ) = Λ\

(⋃
α∈Λ

{
β ∈ Λ|∃γ ∈ Zn≥0 \{(0, .., 0)} s.t. β = α+ γ

})
.

An element of Cor(Φ) is called a corner of Φ.
Let F be a set of s polynomials f1, f2, . . . , fs in K[x] such that VK(F ) ∩X = {O} where
VK(F ) = {a ∈ Kn|fi(a) = 0, 1 ≤ i ≤ s} and X is an open neighborhood of the ori-
gin O of Kn. We define a set HF to be the set of algebraic local cohomology classes
associated to F in Hn

[O](K[x]) that are annihilated by the ideal generated by F , where
HF = {ψ ∈ Hn

[O](K[x]) | f1 ∗ψ = f2 ∗ψ = · · · = fs ∗ψ = 0}. Since VK(F )∩X = {O},
HF is a finite dimensional vector space. In our previous works [3,4,5], we introduced and
implemented algorithms for computing bases of the vector space HF . Note that these algo-
rithms mainly consist of linear algebra techniques.

Definition 1. Let � be a term order on Zn≥0.
(1) The term order � is called global if α � (0, 0, . . . , 0) for all α 6= (0, 0, . . . , 0).
(2) The term order � is called local if (0, 0, . . . , 0) � α for all α 6= (0, 0, . . . , 0).
(3) The inverse order �−1 of � is defined by α � β ⇐⇒ β �−1 α where α, β ∈ Zn≥0.

Note that if a term order � is local, then the inverse term order �−1 is global.

Definition 2. Let us fix a (global or local) term order on Zn≥0. Let ΨF be a basis of the
vector space HF such that for all ψ ∈ ΨF , hc(ψ) = 1, ht(ψ) /∈ ht(ΨF \{ψ}) and ht(ψ) /∈
LL(ΨF ). Then, the basis is called a reduced basis of HF w.r.t. �.

Definition 3. Let � be a local term order on Zn≥1 and Ψ a subset of Hn
[O](K[x]) such that

an element forms
[

1
xλ

]
+
∑
λ�τ c(λ,γ)

[
1
xτ

]
where c(λ,γ) ∈ K and τ ∈ Zn≥1. For

γ = (γ1, . . . , γn) ∈ Zn≥1, the transfer GBΨ is defined by the following GBΨ(γ) = xγ−1 −
∑

κ∈hex(ψ)

c(κ,γ)x
κ−1 in K[x], if γ ∈ Expo(LL(Ψ)),

GBΨ(γ) = xγ−1 in K[x], if γ /∈ Expo(LL(Ψ)),

where κ = (κ1, . . . , κn) ∈ Zn≥1, γ−1 = (γ1−1, . . . , γn−1), κ−1 = (κ1−1, . . . , κn−1).
For a subset Φ ⊂ Zn≥1, the set GBΨ(Φ) is also defined by GBΨ(Φ) = {GBΨ(γ)|γ ∈ Φ}.

Since VK(F ) ∩X = {O}, 〈F 〉 has qO with
√
qO = 〈x1, . . . , xn〉 as a primary components

of 〈F 〉. The primary component can be directly obtaind from a reduced basis of HF w.r.t. a
local term order �, as follows.

Theorem 4. Let F be a finite subset in K[x] with VK(F )∩X = {O}, Ψ a reduced basis of
the vector space HF w.r.t. a local term order� in Hn

[O](K[x]) and Φ = Cor (Expo(ht(Ψ)))

in Zn≥1. Then, GBΨ(Φ) is the reduced Gröbner basis of qO w.r.t. the global term order �−1

in K[x].

Let I be a zero-dimensional ideal and q∩ q1 ∩ · · · ∩ qt a minimal primary decomposition
of I with the prime ideal

√
q = p. Next, we consider how to compute a primary component

of q via algebraic local cohomolgy classes. Note that it is reported that algorithms, published
in [1,2,3], for computing a prime decomposition of the radical

√
I are much faster than those

for computing primary decomposition of a polynomial ideal I in K[X]. One can utilized the
algorithms for computing a prime component of

√
I .
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In order to facilitate the discussion easily, let {p1, . . . , p`} ⊂ K[x] be the reduced Gröbner
basis of a prime ideal p w.r.t. a global term order �x and q ⊂ K[x] a primary ideal with√
q = p and p 6= 〈1〉. Set p1 − z1, p2 − z2, . . . , p` − z` where z1, . . . , zn are tag variables.

That is, we regard (K[x]/p)[p1, . . . , p`] as (K[x]/p)[z1, . . . , z`] as follows.

Lemma 5. Let �x∪z be a block term order in Zn+`
≥0 with �x and x� {z1, . . . , z`} and G a

Gröbner basis of the ideal 〈p1− z1, p2− z2, . . . , p`− z`〉 w.r.t. �x∪z . For f ∈ q, let g = f
G

be the remainder of g on division by G. Then,
(i) g(z1, . . . , z`) ∈ (K[x]/p)[z1, . . . , z`], and
(ii) f = g(p1, . . . , p`) is an expression of f as a polynomial in p1, . . . , p`.

Lemma 6. Let I = 〈f1, . . . , fs〉 be a zero-dimensional ideal, q a primary component of I
and
√
q = p = 〈p1, . . . , p`〉. Let �x∪z be a block term order with �x and x� {z1, . . . , z`}

and G a Gröbner basis of the ideal 〈p1 − z1, p2 − z2, . . . , p` − z`〉 w.r.t. �x∪z . Set F ′ ={
f1
G
, f2

G
, . . . , fs

G
}

in (K[x]/p)[z1, . . . , z`]. Then, VK[x]/p(F ′) ∩ X = {O} where X is

an open neighborhood of the origin O of (K[x]/p)`.

Proposition 7. Using the same notation as in Lemma 6, a set HF ′ of algebraic local coho-
mology classes in H`

[O]((K[x]/p)[z1, . . . , z`]), is a finite dimensional vector space. Further-
more, there exist algorithms for computing a basis of the vector space.

Theorem 8. Using the same notation as in Lemma 6, let B be a basis of q in K[x] and B′

a basis of a primary component q′ of the ideal 〈F ′〉 in (K[x]/p)[z1, . . . , z`] where
√
q =

〈p1, p2, . . . , p`〉 in K[x] and
√
q′ = 〈z1, z2, . . . , z`〉 in (K[x]/p)[z1, . . . , z`]. Then, q =

〈{g(p1, . . . , p`) ∈ K[x] | g(z1, . . . , z`) ∈ B′ ⊂ (K[x]/p)[z1, . . . , z`]}〉.

The primary component q′ ⊂ (K[x]/p)[z1, . . . , z`] can be obtained by utilizing Theorem 4.
Thus, by utilizing the theorem above, it is possible to obtain the primary component q ⊂
K[x].
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A Gröbner basis as a combination of congruence
closures

Deepak Kapur1 [kapur@unm.edu]

1 The University of New Mexico, Albuquerque, USA

A novel perspective on the Groebner basis algorithm for polynomial ideals over the inte-
gers [1] is presented. The approach utilizes a congruence closure algorithm, incorporating
associative-commutative (AC) function symbols with identities, to handle ground equations.
Specifically, two congruence closure algorithms are combined: one for the AC function sym-
bol ‘+’ with 0 as the identity, and another for the AC symbol ‘∗’ with 1 as the identity.
Constants are treated as shared symbols [2].
Terms (expressions) constructed using these symbols are transformed into an equivalent sum-
of-products form through the distributivity property. By employing purification and intro-
ducing new symbols, two separate subsystems of equations are generated: one using ‘+’ and
another using ‘∗’. Canonical rewrite systems are independently derived from each subsystem
and subsequently combined by overlapping pairs of rules that share a constant from both the
‘+’ and ‘∗’ subsystems.
Each subsystem can be analyzed independently using termination orderings that extend a
common ordering on constant symbols. The distributivity property between ‘∗’ and ‘+’ as
well as the zero property of multiplication are accounted for by employing a new critical
pair/superposition construction among terms belonging to different symbols but sharing a
constant.
This alternative perspective offers significant flexibility and enables modular and simplified
proofs of correctness. Termination orderings on polynomials are not required to be admis-
sible on the original symbols, resulting in the generation of “weird” Groebner bases. While
reduction (simplification) on polynomials in the original symbols may not be terminating, it
remains confluent. “Weird” canonical forms can be associated with elements of the quotient
ring defined by a polynomial ideal.
This view of the Groebner basis algorithm for polynomial ideals over the integers deviates
significantly from other approaches in the literature, including the popular one that treats it
as an instance of the Knuth-Bendix completion procedure proposed by Kandri-Rody, Kapur,
and Winkler in 1989 [3], especially when generalized to AC symbols and/or richer equational
theories [5]. Instead, it aligns more closely with regarding the polynomial equivalence prob-
lem modulo an ideal as a word problem over a finitely presented commutative ring with unity,
as proposed by Kandri-Rody, Kapur, and Narendran in 1985 [4].
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Doctrine specific ur-algorithms
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Various constructions of categories have a universal property expressing the freeness/initiality
of the construction within a specific categorical doctrine. Expressed in an algorithmic frame-
work, it turns out that this universal property is in a certain sense a doctrine-specific "ur-
algorithm” from which various known categorical constructions/algorithms can be derived in
a purely computational way. This can be viewed as a categorical version of the Curry-Howard
correspondence to extract programs from proofs.
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The most general theory of one-sided fractions
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Ore’s method of localizations is an example of a theory of one-sided fractions. The aim of
the talk is to introduce the most general theory of one-sided fractions based on the papers [1]
and [2].
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The Newton-Puiseux algorithm and
effective algebraic series

Manfred Buchacher1 [manfredi.buchacher@gmail.com]
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Given a polynomial p(x, y) in two variables x and y over an algebraically closed field K of
characteristic zero, the classical Newton-Puiseux algorithm [2] determines the first terms of
a series φ in x over K that solves p(x, φ) = 0. Finding a series solution of a polynomial
equation is one and the most apparent aspect of the algorithm. However, it also permits to
encode algebraic series by a finite amount of data and to effectively compute with them on
the level of these encodings. While this is well-known for univariate algebraic series, this
is not the case for algebraic series that are multivariate. We explain how to do effective
arithmetic with multivariate algebraic series and complement the discussion of the Newton-
Puiseux algorithm for (multivariate, not necessarily bivariate) polynomials over a field of
characteristic zero in [3]. We also show that the convex hull of the support of an algebraic
series is a polyhedral set and explain how the Newton-Puiseux algorithm and an effective
equality test for algebraic series can be used to compute its vertices and bounded faces.
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New dimension polynomials and invariants of
inversive difference-differential field extensions

Alexander Levin [levin@cua.edu]
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USA

We introduce a new type of reduction in the ring of inversive difference-differential poly-
nomials and use the corresponding technique of autoreduced sets to prove the existence and
outline a method of computation of dimension polynomials of a new type associated with
finitely generated inversive difference-differential field extensions. We show that the ob-
tained dimension polynomials (which are numerical polynomials in three variables) carry
more difference-differential birational invariants than previously known univariate and bi-
variate difference-differential dimension polynomials (see, for example, [1, Section 6.7 and
Chapter 7], [2] and [3]). We describe these invariants and show how they can be applied to
the equivalence problem for systems of algebraic difference-differential equations.
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Computation of Koszul homology and application
to involutivity of partial differential systems
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This talk will be a presentation of the paper [1]. The formal integrability of systems of partial
differential equations plays a fundamental role in different analysis and synthesis problems
for both linear and nonlinear differential control systems. Following Spencer’s theory, to
test the formal integrability of a system of partial differential equations, we must study when
the symbol of the system, namely, the top-order part of the linearization of the system, is 2-
acyclic or involutive, i.e., when certain Spencer cohomology groups vanish. Using the well-
known fact that Spencer cohomology is dual to Koszul homology and symbolic computation
methods, we show how to effectively compute the homology modules defined by the so-called
Koszul complex of a finitely presented module over a commutative polynomial ring. These
results are implemented using the OREMORPHISMS package. We then use these results to
effectively characterize 2-acyclicity and involutivity of the symbol of a system of partial
differential equations. Finally, we show explicit computations on different examples.
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A semi-decision procedure
for proving operator statements

Clemens Hofstadler1, Clemens G. Raab2,
Georg Regensburger1 [chofstadler@mathematik.uni-kassel.de]
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Linear operators play a fundamental role in various mathematical contexts, appearing as ring
elements (e.g., in C∗-Algebras), as (rectangular) matrices, or as vector space and module
homomorphisms. In this talk, we present a recently developed algebraic framework [1] for
proving first-order statements about linear operators by computations with noncommutative
polynomials. Furthermore, we present our new SAGEMATH package operator_gb [2],
which offers functionality for automatising such computations. We aim to provide a practical
understanding of our approach and the software through examples, including recent work
[3], while also explaining the completeness of the method in the sense that it allows to find
algebraic proofs for every true first-order operator statement. Our main result is a semi-
decision procedure that allows to automatically prove operator statements phrased within
first-order logic based on a single computation with noncommutative polynomials.
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A differential algebraic approach of systems
theory

Sette Diop1 [sette.diop@cnrs.fr]

1 Université Paris-Saclay, CNRS, CentraleSupélec, Laboratoire des signaux et systèmes, Gif
sur Yvette, France

Differential algebraic geometry (and differential algebra) [1,2] was earlier recognized as par-
ticularly adapted as a language for the description of some of the systems theory problems.
See the pioneering works by Jean-François Pommaret [3] and Michel Fliess [4]. In the lat-
ter paper the notion of invertibility, which was long studied in the control literature, was
given a better clarification. And in the [5] differential algebraic elimination theory was in-
voked as, not only a better description of questions in the control literature, but a constructive
answer, too. One of the fundamental notions of systems theory, that of observability, was
also given a differential algebraic geometry description which clarified many aspects of that
questions [6]. This contribution is a tentative comprehensive expose of differential algebraic
geometry known answers to some of the systems theory questions. The latter include previ-
ously mentioned ones, and notions of invariants, structural issues, and constructivity.
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Hypergeometric creative telescoping
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China
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In this talk, we adapt the theory of normal and special polynomials from symbolic integration
to the summation setting, and then built up a general framework embracing both the shift and
the q-shift cases. In the context of this general framework, we are able to unify the methods of
creative telescoping for hypergeometric terms and q-hypergeometric terms using reductions.
These two cases will be split up only when it is really necessary. This way instantly reveals
the intrinsic difference between the shift and the q-shift cases, and hopefully, provides us
more insights about the more general cases. This is joint work with Hao Du, Hui Huang and
Ziming Li.
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Crossed homomorphisms and
Cartier-Kostant-Milnor-Moore theorem for

difference Hopf algebras
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USA
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The celebrated Milnor-Moore theorem and the more general Cartier-Kostant-Milnor-Moore
theorem establish close relationships of a connected and a pointed cocommutative Hopf alge-
bra with its Lie algebra of primitive elements and its group of group-like elements. Crossed
homomorphisms for Lie algebras, groups and Hopf algebras have been studied extensively,
first from a cohomological perspective and then more broadly, with an important case given
by difference operators. In this talk we show that the relationship among the different alge-
braic structures captured in the Milnor-Moore theorem can be strengthened to include crossed
homomorphisms and differenece operators. We give a graph characterization of Hopf alge-
bra crossed homomorphisms which are also compatible with the Milnor-Moore relation. We
further investigate derived actions from crossed homomorphisms on groups, Lie algebras and
Hopf algebras, and establish their relationship. Finally we obtain a Cartier-Kostant-Milnor-
Moore type structure theorem for pointed cocommutative difference Hopf algebras. Exam-
ples and classifications of difference operators are also provided for several Hopf algebras.

Keywords
crossed homomorphism, difference operator, Hopf algebra, Lie algebra, Milnor-Moore theo-
rem, Cartier-Kostant-Milnor-Moore theorem
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Approximate symmetries and conservation laws
and their applications to PDEs

Alexei Cheviakov1 [shevyakov@math.usask.ca]

1 Department of Mathematics and Statistics, University of Saskatchewan, Saskatoon, SK,
Canada

Many nonlinear PDE models that arise in applications are in some sense “close” to integrable
PDEs or other equations with rich analytical structure but lack such structure themselves. For
PDE models with small parameter(s), one may be interested in finding symmetries, conserved
quantities, and solutions that hold approximately [1,2], up to higher order terms in the small
parameter(s). I will discuss approaches to the systematic construction of such approximate
quantities and approximate solutions, their mathematical aspects, usefulness and relevance in
the physical context [3], and examples of symbolic computer algebra-based computation [4]
of these objects. This is a joint work with Mahmood Tarayrah and Zhengzheng Yang.

Keywords
Nonlinear PDEs, Apprioximate symmetries, Apprioximate conservation laws, Symbolic com-
putation
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Difference-differential polynomials in SageMath

Antonio Jiménez-Pastor1 [ajpa@cs.aau.dk]

1 DEIS, Aalborg University, Aalborg, Denmark

In this talk we are going to present dalgebra, a new module developed for SageMath [7]
focused on the description of the structures and elements necessary to work in the fields of
Differential or Difference Algebra.

A differential ring [6] is a pair (R, ∂) where R is a ring and ∂ a derivation over R. Simi-
larly, a difference ring is a pair (R, σ) where now σ is a ring homomorphism. From these
rings we can build difference/differential extensions, we can state respectively summation or
integration problems, we can try to solve difference or differential systems, etc. In particular,
there is a particular extension of particular interest for us: the ring of difference/differential
polynomials.

There are many problems in both the differential and the difference world, in some cases even
equivalent problems: as an example we can consider the Symbolic Integration problem [3]
and Symbolic Summation problem [8]. We found that a generic software to work with these
objects is not easy to find. There are implementations for linear operators (both with differ-
ences and derivation) in SageMath (ore_algebra [4]), in Maple (OreTools [1]), and in
Mathematica (HolonomicFunctions [5]). We can also find an implementation of differ-
ential polynomials (not difference) in the Maple package DifferentialAlgebra [2].

This is the reason we decided to implement a new package in SageMath [7], an open source
Computer Algebra software based on Python. This new package dalgebra provides a
simple framework to define difference and differential ring and even a combination of the
two. It also implements the difference and differential polynomials. This is a great starting
point to implement further algorithms in the world of difference and differential algebra.

The package dalgebra is publicly available on Github1 and is under active development,
adding more features and improving the user interface. In this talk we will present the main
features of dalgebra, including but not being limited to how we handle differential rings,
how to set up a system of such equations and how to manipulate differential polynomials.

Keywords
difference algebra, differential algebra, SageMath, linear operators
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Towards an effective integro-differential
elimination theory

Thomas Cluzeau1, Camille Pinto2, Alban Quadrat2 [camille.pinto@inria.fr]

1 Université de Limoges, XLIM, Limoges, France
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Algebraic analysis is a mathematical theory which studies linear systems of ordinary or partial
differential equations using rings of partial differential operators, module theory, homological
algebra etc. Within this approach, a linear functional system yields a finitely presented left
module over a non commutative polynomial ring of functional operators. Structural proper-
ties and equivalences of linear systems can be intrinsically reformulated within module theory
and homological algebra. A classic environment in algebra is a noetherian ring with finitely
generated modules. An example is the Weyl algebra A1: the ring of differential operators
with polynomial coefficients in one variable (coefficient living in the commutative field k).
But some algebras are not noetherian, such as the algebra of entire functions, or the algebra
of polynomial in an infinity of variable.

Our team research is currently interested in studying rings of integro-differential operators.
The use of this rings allows one to algebraize elementary calculus by combining the differen-
tial operator, the indefinite integral and the evaluation at the initial time t0. I1 usually denotes
the ring of integro-differential operators in one variable with polynomial coefficients. It can
be define by: « the smallest k-algebra containing t (the operator define by the product with
the elementary polynomial t), ∂ ( the differential operator), and I (the integral operator) ».
Bavula worked on this subject recently (see [1]) and proved that I1 was not noetherian.
Nonetheless, Bavula also proved that I1 was a coherent algebra. That means that all finitely
generated sub-module of I1 is finitely presented. Adding a condition on sub-modules offsets
the non-notherianity of I1 and allows us to do calculus. Yet, Bavula gave a theorical argument
to say that I1 is coherent. We would like to make this proof effective and be able to actually
make calculus in I1 with a computer machine.

Keywords
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Symbolic solution of differential equations

Franz Winkler1 [franz.winkler@risc.jku.at]

1 Research Institute for Symbolic Computation, Johannes Kepler University Linz, Linz, Aus-
tria

We present the algebro-geometric method for computing explicit formula solutions for alge-
braic differential equations (ADEs), as described in [1]. An algebraic differential equation is
a polynomial relation between a function, some of its partial derivatives, and the variables in
which the function is defined. Regarding all these quantities as unrelated variables, we get an
algebraic solution hypersurface; i.e., a hypersurface on which the solutions are to be found.
Parametrizations of the solution hypersurface are closely related to solutions of the ADE.

This approach is relatively well understood for rational, algebraic, and power series solutions
of single algebraic ordinary differential equations (AODEs). First steps are taken towards a
generalization to other types of solutions and to partial differential equations.
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Rational solutions of first-order algebraic
ordinary difference equations
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Xi’an Jiaotong-Liverpool University, Suzhou, China

An algebraic ordinary difference equation (AO∆E) is a difference equation of the form

F (x, y(x), y(x + 1), · · · , y(x + m)) = 0,

where F is a nonzero polynomial in x, y(x), y(x + 1), · · · , y(x + m) with coefficients in
an algebraically closed field K of characteristic zero, and m ∈ N. We say that an AO∆E is
autonomous if the independent variable x does not appear in it explicitly. For computational
purpose, we may choose K = Q̄, the field of algebraic numbers. AO∆Es naturally appear
from various problems, such as symbolic summation [2], factorization of linear difference
operators [1], analysis of time or space complexity of computer programs with recursive calls
[3]. Thus, to determine (closed form) solutions of a given AO∆E is a fundamental problem
in difference algebra and is of general interest.

We are mainly interested in rational solutions of first-order AO∆Es. In [3], Feng, Gao
and Huang proposed an algorithm for computing a rational solution for a first-order au-
tonomous AO∆E provided that a bound for the degree of the rational solution is given.
They also pointed out that they could not bound the degrees of rational solutions through
the parametrization technique because the difference version of Theorem 3.7 in [2] is not al-
ways true (see Example 4.1 in [3]). We overcome this missing part and present an algorithm
for computing such a degree bound, and thus derive a complete algorithm for computing
corresponding rational solutions.

Keywords
algebraic ordinary difference equations; strong rational general solutions; parametrization;
separable difference equation; resultant theory; algorithms
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On an interplay of computer algebra and ring
theory

Viktor Levandovskyy [viktor.levandovskyy@mathematik.uni-kassel.de]

Insitute of Mathematics, Kassel University, Germany

Many concepts from the ring theory are complicated or even infeasible for an algorithmic
treatment. However, when algorithmizable, they often offer serious advances for applica-
tions of computer algebra. Being interested in non-commutative algebras, I will address
Gelfand-Kirillov dimension and Ore localization of algebras and modules as well as gener-
alized torsion, and discuss several important applications to problems arising in systems of
linear functional equations. Many of the topics above have been supported by implementa-
tion in SINGULAR:PLURAL [1], a subsystem of SINGULAR for treating PBW algebras (a.k.a
G-algebras) and providing vast functionality for modules over such algebras.

Keywords
Non-commutative computer algebra, Non-commutative Gröbner basis, Gelfand-Kirillov di-
mension, Ore localization
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An abelian ambient category for behaviors in
algebraic systems theory

Sebastian Posur1 [sebastian.posur@uni-muenster.de]

1 University of Münster, Faculty of Mathematics and Computer Science, Münster, Germany

In the algebraic analysis approach to systems theory, systems are modeled as solution sets
of finitely many linear equations over a ring, usually a ring of differential operators. These
solutions are taken within some fixed module, usually a module whose elements may be inter-
preted as trajectories. Willems coined the term behavior for such solution sets [1]. Whenever
our ring is noetherian and our fixed module is an injective cogenerator, a good notion of an
abelian ambient category for behaviors is known in algebraic systems theory: namely the
opposite category of finitely presented modules over our ring. In that good case, intrinsic
features of behaviors, like being controllable or autonomous, translate into intrinsic features
of finitely presented modules, like being torsion-free or torsion.

We propose a setup for algebraic systems theory that also works for an arbitrary fixed mod-
ule over an arbitrary ring [2]. This setup is based on functor categories instead of module
categories. This functorial setup overcomes some deficiencies that arise within the mod-
ule theoretic approach, like behaviors not being isomorphic in situations where they clearly
should be isomorphic. We provide an example study case with delay-differential systems.
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gories, finitely presented functors
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