Fitting Sparse Reduced Data

Ryszard Kozera ${ }^{1}$
 [ryszard_kozera@sggw.edu.pl]

${ }^{1}$ Institute of Information Technology, Warsaw University of Life Sciences - SGGW, Warsaw, Poland

We discuss the problem of fitting data points $\mathcal{Q}_{m}=\left\{q_{i}\right\}_{i=0}^{m}$ in arbitrary Euclidean space \mathbb{E}^{n}. It is additionally assumed here, that the corresponding interpolation knots $\left\{t_{i}\right\}_{i=0}^{m}$ remain unknown and as such they need to be somehow replaced by $\hat{\mathcal{T}}=\left\{\hat{t}_{i}\right\}_{i=0}^{m}$ (subject to $\hat{t}_{i}<$ $\left.\hat{t}_{i+1}\right)$. Here, without loss of generality $\hat{t}_{0}=0$ and $\hat{t}_{m}=T$, for some $T>0$. In the case of Q_{m} dense the issue of convergence rate of a given interpolation scheme $\hat{\gamma}$ (based on \mathcal{Q}_{m} and $\hat{\mathcal{T}}$) in approximating γ (satisfying $\gamma\left(t_{i}\right)=q_{i}$) has been extensively studied (see e.g. [1]). In contrast for \mathcal{Q}_{m} sparse a possible criterion to select the new knots $\hat{\mathcal{T}}$ is to minimize:

$$
\begin{equation*}
\mathcal{J}\left(\hat{t}_{1}, \hat{t}_{2}, \ldots, \hat{t}_{m-1}\right)=\int_{0}^{T}\left\|\ddot{\gamma}_{N}(\hat{t})\right\| d \hat{t} \tag{1}
\end{equation*}
$$

where $\hat{\gamma}_{N}$ is a natural spline based on $\mathcal{Q}_{m}=\left\{q_{i}\right\}_{i=0}^{m}$ and $\hat{\mathcal{T}}$. Finding such optimal knots $\hat{\mathcal{T}}^{\text {opt }}$ forms a highly nonlinear optimization task (see e.g. [2]). One of the computational schemes handling (1) (called Leap-Frog) relies on the composition of overlapping univariate optimizations schemes - see [3]. We discuss special conditions under which the unimodality of these univariate functions holds and show the robustness in case of their perturbation.

Keywords

Interpolation, Optimization, Reduced Data

References

[1] R. Kozera, L. Noakes and M. WiloŁazka, Exponential parameterization to fit reduced data. Applied Mathematics and Computation 391, 125645 (2021).
[2] R. Kozera and L. Noakes, Non-linearity and non-convexity in optimal knots selection for sparse reduced data. In V.P. Gerdt et al., CASC 2017, LNCS 10490, 257-271 (2017).
[3] R. Kozera, L. Noakes and A. Wiliński, Generic case of Leap-Frog Algorithm for optimal knots selection in fitting reduced data. In M. Paszyński et al., ICCS 2021, LNCS 12745, 337-350 (2021).

