Applications of Computer Algebra – ACA 2022 Gebze-Istanbul, Turkey, | August 15-19, 2022 Session on "Computer Algebra Modeling in Science and Engineering"

Fitting Sparse Reduced Data

Ryszard Kozera¹

[ryszard_kozera@sggw.edu.pl]

¹ Institute of Information Technology, Warsaw University of Life Sciences – SGGW, Warsaw, Poland

We discuss the problem of fitting data points $Q_m = \{q_i\}_{i=0}^m$ in arbitrary Euclidean space \mathbb{E}^n . It is additionally assumed here, that the corresponding interpolation knots $\{t_i\}_{i=0}^m$ remain unknown and as such they need to be somehow replaced by $\hat{\mathcal{T}} = \{\hat{t}_i\}_{i=0}^m$ (subject to $\hat{t}_i < \hat{t}_{i+1}$). Here, without loss of generality $\hat{t}_0 = 0$ and $\hat{t}_m = T$, for some T > 0. In the case of Q_m dense the issue of convergence rate of a given interpolation scheme $\hat{\gamma}$ (based on Q_m and $\hat{\mathcal{T}}$) in approximating γ (satisfying $\gamma(t_i) = q_i$) has been extensively studied (see e.g. [1]). In contrast for Q_m sparse a possible criterion to select the new knots $\hat{\mathcal{T}}$ is to minimize:

$$\mathcal{J}(\hat{t}_1, \hat{t}_2, \dots, \hat{t}_{m-1}) = \int_0^T \|\ddot{\gamma}_N(\hat{t})\| d\hat{t},$$
(1)

where $\hat{\gamma}_N$ is a natural spline based on $\mathcal{Q}_m = \{q_i\}_{i=0}^m$ and $\hat{\mathcal{T}}$. Finding such optimal knots $\hat{\mathcal{T}}^{opt}$ forms a highly nonlinear optimization task (see e.g. [2]). One of the computational schemes handling (1) (called Leap-Frog) relies on the composition of overlapping univariate optimizations schemes - see [3]. We discuss special conditions under which the unimodality of these univariate functions holds and show the robustness in case of their perturbation.

Keywords

Interpolation, Optimization, Reduced Data

References

[1] R. KOZERA, L. NOAKES AND M. WILOŁAZKA, Exponential parameterization to fit reduced data. *Applied Mathematics and Computation* **391**, 125645 (2021).

[2] R. KOZERA AND L. NOAKES, Non-linearity and non-convexity in optimal knots selection for sparse reduced data. In V.P. Gerdt et al., *CASC 2017, LNCS* 10490, 257-271 (2017).
[3] R. KOZERA, L. NOAKES AND A. WILIŃSKI, Generic case of Leap-Frog Algorithm for optimal knots selection in fitting reduced data. In M. Paszyński et al., *ICCS 2021, LNCS* 12745, 337–350 (2021).