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The swinging Atwood machine (SAM) consists of two massesm1,m2 = m1(1+ε) attached
to opposite ends of a massless inextensible thread wound round two massless frictionless
pulleys of negligible radius (see [1,2]). The mass m2 is constrained to move only along a
vertical while mass m1 is allowed to oscillate in a plane and it moves like a pendulum of
variable length. Such a system has two degrees of freedom and its Hamiltonian function may
be written in the form
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where two variables r, ϕ describe geometrical configuration of the system, and pr, pϕ are the
corresponding canonically conjugate momenta. Note that equations of motion of the SAM are
essentially nonlinear, and their general solution cannot be found in symbolic form. However,
there exists a periodic solution which may be represented in the form of power series in a
small parameter ε (see [3])
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Note that for ε > 0 the system under consideration has no a static equilibrium state when the
coordinates r(t), ϕ(t) are some constants. As periodic solution (2) describes oscillations of
the bodies near some equilibrium positions and such a state of the system exists only owing
to oscillations one can consider this state as a state of dynamic equilibrium.

As the amplitude of oscillations in (2) is determined by the masses difference ε, it is quite
natural to investigate stability of solution (2). Analysing differential equations of the per-
turbed motion of the SAM and using an infinite determinant method (see [4]), we computed



the characteristic exponents in the form of power series
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Note that characteristic exponents (3) are different purely imaginary numbers. Thus we prove
that periodic solution (2) is stable in linear approximation.
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