Applications of Computer Algebra – ACA 2021 Virtual. Online | July 23-27, 2021 Session on "*Computer Algebra Modeling in Science and Engineering*"

Non-Generic Case of Leap-Frog Algorithm for Optimal Knots Selection in Fitting Reduced Data

Ryszard Kozera^{1,2}, *Lyle Noakes*²

[ryszard_kozera@sggw.edu.pl]

¹ Institute of Information Technology, Warsaw University of Life Sciences - SGGW, Warsaw, Poland

² School of Physics, Mathematics and Computing, The University of Western Australia, Perth, Australia

The problem of fitting n + 1 points $\mathcal{M} = \{x_i\}_{i=0}^n$ in arbitrary Euclidean space \mathbb{E}^m is discussed here. The class \mathcal{I} of piecewise C^2 interpolants $\gamma : [0, T] \to \mathbb{E}^m$ satisfying $\gamma(t_i) = x_i$ and $\ddot{\gamma}(t_0) = \ddot{\gamma}(T) = \vec{0}$ admits the *internal knots* $\mathcal{T} = \{t_i\}_{i=1}^{n-1}$ to vary satisfying the inequalities $t_0 = 0 < t_1 < ... < t_n = T$. We also stipulate that $\gamma \in \mathcal{I}$ is at least of class C^1 over \mathcal{T} and extends to $C^2([t_i, t_{i+1}])$. Recall that for any fixed set of knots \mathcal{T} the minimization task (over \mathcal{I}):

$$\mathcal{J}_T(\gamma) = \sum_{i=0}^{n-1} \int_{t_i}^{t_{i+1}} \|\ddot{\gamma}(t)\|^2 dt , \qquad (1)$$

yields a unique optimal curve $\gamma_{opt} \in \mathcal{I}$ rendering a natural cubic spline γ_{NS} - see [1] or [2]. Consequently, letting the knots $\{t_i\}_{i=1}^{n-1}$ to vary, the task of optimizing (1) over \mathcal{I} reformulates into a search for an optimal natural spline γ_{NS} with knots $\{t_i\}_{i=1}^{n-1}$ relaxed subject to $t_i < t_{i+1}$. By [1], as γ_{NS} is uniquely determined by \mathcal{T} , minimizing (1) converts into minimizing a highly non-linear function $J_0(t_1, t_2, \ldots, t_{n-1})$ depending on n-1 variables satisfying $t_0 = 0 < t_1 < \ldots < t_n = T$. Majority of numerical schemes for finding critical points of J_0 lead to numerical difficulties (see e.g. [3]). We discuss here a Leap-Frog scheme (see [3] or [4]) which minimizes J_0 based on optimizing a sequence of single variable functions $J_0^{(k)}(t_{k+1})$. The analysis of the sufficient conditions enforcing unimodality of $J_0^{(k)}$ for the generic case of Leap-Frog iterations (over each internal sub-interval $[t_i, t_{i+2}]$ with $i = 1, \ldots, n-3$) is addressed in [5]. Our paper extends the latter to the non-generic case of Leap-Frog optimizations taking place over two terminal sub-intervals $[0, t_2]$ and $[t_{n-2}, T]$. Symbolic calculation and numerical tests accompany the theoretical analysis in question.

Keywords

Interpolation, optimization, reduced data

References

[1] C. DE BOOR, A Practical Guide to Splines. Springer-Verlag, New York Heidelberg Berlin, 1985.

[2] B.I. KVASOV, *Methods of Shape Preserving Spline Approximation*. World Scientific Pub. Company, Singapore, 2000.

[3] R. KOZERA; L. NOAKES, Optimal knots selection for sparse reduced data. In *Image and Video Technology - PSIVT 2015 Workshops*, F. Huang and A. Sugimoto, 3–14., LNCS 9555, Springer Int. Pub., Switzerland, 2016.

[4] L. NOAKES; R. KOZERA, Nonlinearities and noise reduction in 3-source photometric stereo. *Journal of Mathematical Imaging and Vision* **18**(2), 119–124 (2003).

[5] R. KOZERA; L. NOAKES; A. WILIŃSKI, Generic case of Leap-Frog algorithm for optimal knots selection in fitting reduced data. In *Computational Sciences - ICCS 2021*, M. Paszyński et al., 337–350., LNCS 12745 Part IV, Springer Nature Switzerland AG, Cham Switzerland, 2021.